EBEAM biography

Key papers from EM groups worldwide on ultrafast and quantum electron-light-matter interactions (selection)

Topics

  1. PINEM: shaping and characterizing electron wavepackets
  2. PINEM: electron-cavity interactions
  3. PINEM, EELS, and CL correlations
  4. Quantum interactions
  5. Electrons as broadband ultrafast light sources
  6. Ultrafast spectroscopy
  7. CL spectroscopy and correlations
  8. Metrology and spectroscopy
  9. On-chip interactions
  10. New start-of-the-art technology and methodology
  11. Previous literature, key original papers
  12. Other relevant reviews

PINEM: shaping and characterizing electron wavepackets

PINEM: electron-cavity interactions

PINEM, EELS, and CL correlations

Quantum interactions

  • A Konečná, F Iyikanat, FJ García de Abajo, Entangling free electrons and optical excitationsScience Adv. 8, eabo7853 (2022) 
    Electron-light momentum scattering creates entanglement with a continuum of optical modes revealed by EELS and CL spectra
  • G. Huang, N. J. Engelsen, O. Kfir, C. Ropers, T. J. Kippenberg, Electron-photon quantum state heralding using photonic integrated circuitsPRX Quantum 4, 020351 (2023) 
    Heralded single-photon generation scheme provides new concepts for on-chip platform for free-electron quantum optics.
  • M. Tsarev, J.W. Thurner, P. Baum, Nonlinear-optical quantum control of free-electron matter waves, Nat. Phys19, 1350 (2023)
    Free-space electron and crossed laser beams interact to create strongly modulated electron pulses with attosecond time structure, representing qbits
  • TP Rasmussen, ÁR Echarri, JD Cox, FJG de Abajo,,Generation of entangled waveguided photon pairs by free electronsScience Adv. 10, eadn6312 (2024) Electron beam generation of counterpropagating plasmon polaritons heralded by the electron energy loss
  • C. I. Velasco, V. Di Giulio, F. J. García de Abajo, Radiative loss of coherence in free electrons: a long-range quantum phenomenonLight Sci. Appl. 13, 31 (2024) 
    Quantum mechanics can manifest at macroscopic distances in free-electron interference produced by electron–radiation coupling in the presence of distant extended objects. 
  • CI Velasco, V Di Giulio, FJ García de Abajo, Radiative loss of coherence in free electrons: a long-range quantum phenomenonLight: Sci. Appl. 13, 31 (2024)
    Long-range quantum mechanical interactions result in a nearly complete depletion of coherence associated with which-way free-electron interference probed by far-field radiation. Probing temperature at a distance.

Electrons as broadband ultrafast light sources

Ultrafast spectroscopy

CL, EELS and correlations

Metrology and spectroscopy

New start-of-the-art technology and methodology

  • Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016)
    New concept of low-dose quantum measurement in TEM
  • Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017) 
    Femtosecond photoemission TEM
  • Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018) 
    Tunable phase plate for TEM
  • S. Meuret, M. Solà Garcia,  T. Coenen, E. Kieft, H. Zeijlemaker, M. Lätzel,  S. Christiansen, S. Y. Woo, Y. H. Ra,  Z. Mi, A. Polman, Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscopeUltramicroscopy 197, 28-38 (2019) 
    Picosecond pump-probe cathodoluminescence microscope
  • A Konečná, FJG de Abajo, Electron beam aberration correction using optical near fieldsPhys. Rev. Lett. 125, 030801 (2020)

Optically-driven phase plates enables dynamic shaping of electron-beam wave functions in space and time.

Calculations on strong electron-light interactions at low energies.

Previous literature, key original papers

  • Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Mat. Proc. Camb. Phil. Soc 29, 297–300 (1933). 
    Kapitza-Dirac effect: electrons scatter off optical standing waves
  • Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev 92, 1069 (1953)
    Smith-Purcell radiation: electrons coupling to a grating create optical radiation
  • Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001)
    Êxperimental demonstration of the Kaptiza-Dirac effect
  • Yamamoto, N., Araya, K. & García de Abajo, F. J. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 64, 205419 (2001).
    First CL from plasmonic nanoparticles
  • Merano, M. et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479–482 (2005)
    First CL lifetime measurements in SEM-CL
  • Vesseur, E. J. R., de Waele, R., Kuttge, M. & Polman, A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007). 
    First 2D CL maps of plasmonic resonances
  • Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007). 
    First 2D EELS maps of plasmonic resonances
  • García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).  
    First link between LDOS and EELS
  • F. J. García de Abajo, M. Kociak, Electron energy-gain spectroscopyN. J. Phys. 10, 073035 (2008). 
    First theoretical model showing quantum correlations in PINEM
  • B. Barwick, D. J. Flannigan, A. H. Zewail, Photon-induced near-field electron microscopyNature 462, 902–906 (2009) 
    First PINEM experiment: strong optical near field imprints side bands on electron energy spectrum
  • Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012) 
    First 2D CL maps of photonic crystal modes
  • Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013). 
    First 3D EELS maps of plasmonic resonances
  • Vesseur, E. J. R., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n=0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013). 
    First angle-resolved CL mapping of dispersion relations
  • Vibrational spectroscopy in the electron microscope, Nature 514, 209–212 (2014).Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
    First photon bunching in CL
  • A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schaefer, C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscopeNature 521, 200-203 (2015) 
    Strong electron-light interaction creates quantum-coherent electron wavepacketsfirst demonstration of quantum coherence in PINEM

Other relevant reviews

  • García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010). 
    Seminal review paper
  • Coenen, T. & Haegel, N. M. Cathodoluminescence for the 21st century: learning more from light. Appl. Phys. Rev 4, 031103 (2017)
    Review of the state of the art of CL
  • Kociak, M. & Zagonel, L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017)
    Review of the state of the art of CL
  • A. Polman, M. Kociak, and F. J. Garcia de Abajo, Electron-beam spectroscopy for nanophotonics, Nature Mater. 18, 1158-1171 (2019) 
    Review of the state-of-the-art of electron-beam spectroscopy for nanophotonics