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Abstract. The existence and properties of photonic band gaps was investigated for a square lattice of
dielectric cylinders in air. Band structure calculations were performed using the transfer matrix method as
function of the dielectric constant of the cylinders and the cylinder radius-to-pitch ratio r/a. It was found
that band gaps exist only for transverse magnetic polarization for a dielectric contrast larger then 3.8
(index contrast >1.95). The optimum r/a ratio is 0.25 for the smallest index contrast. For silicon cylinders
(n = 3.45) the widest gap is observed for r/a = 0.18. Band structure calculations as function of r/a show
that up to four gaps open for the silicon structure. The effective index was obtained from the band
structure calculations and compared with Maxwell-Garnett effective medium theory. Using the band
structure calculations we obtained design parameters for silicon based photonic crystal waveguides. The
possibility and limitations of amorphous silicon, silicon germanium and silicon-on-insulator structures to
achieve index guiding in the third dimension is discussed.
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1. Introduction

A photonic crystal is composed of a periodic arrangement of dielectric ma-
terial in two or three dimensions. If the periodicity and symmetry of the
crystal and the dielectric constants of the materials used are chosen well, the
band structure of such a crystal shows a photonic band gap (PBG) for one or
both polarizations, i.e. at particular frequencies light propagation is pro-
hibited in any direction in the crystal. The possible applications of these
photonic crystals are numerous, including inhibition and enhancement of
spontaneous emission (Sprik et al. 1996; Megens et al. 1999), fabrication of
sharp waveguide bends (Mekis et al. 1996; Lin et al. 1998), couplers and
filters (Stoffer et al. 2000).

In three dimensions the fabrication of photonic crystals for optical frequen-
cies relies mainly on self-assembly techniques. In two dimensions, lithography
and anisotropic etching techniques can be used. Two-dimensional (2D) pho-
tonic crystals can be integrated with existing planar optical waveguide tech-
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nology in which lithography and etching are used routinely for the fabrication
of waveguides and other devices.

In two dimensions the only simple structure that offers a full PBG, i.e. a band
gap overlapping for both transverse magnetic (TM) and transverse electric
(TE) polarization, is a triangular array of holes (Winn ez al. 1994). However,
this structure is relatively difficult to fabricate with high aspect ratio because
little open space is available in the lattice for the volatile etching products to
escape. Therefore we will focus on structures made using cylinders. The need of
a 90° waveguide led to the choice of a square lattice (Mekis et al. 1996; Lin et al.
1998; Baba et al. 1999; Tokushima et al. 2000). In a square lattice of cylinders
band gaps only open up for TM polarization (E-field along the cylinder axis);
for the TE polarization no band gaps are expected (Joannopoulos et al. 1995).

In this paper we describe calculations of the photonic and waveguiding
properties of 2D photonic crystal slab waveguides based on a square lattice
of dielectric cylinders in air. We want to explore the minimum requirements
and tolerances for fabrication of devices based on silicon as a base material,
operating around the standard telecommunication wavelength of 1.5 pm. In
the considered structures, vertical confinement is provided by index guiding
using either amorphous silicon (a-Si) or SiGe sections in the pillars, or by
using silicon-on-insulator (SOI) materials. Waveguide properties are calcu-
lated based on dielectric waveguide theory in which the photonic crystal is
incorporated using the effective dielectric constant derived from the calcu-
lated band structures.

2. Band structure calculations

Band structure calculations were performed for infinitely long cylinders
placed on a square lattice, using the transfer matrix method (Pendry and
MacKinnon 1992). The structure considered in our calculations is shown in
Fig. 1. The cylinder radius r and pitch @ are shown in the upper left corner of
the figure. The right part shows the definition of TM and TE polarizations.
The lower left corner shows the square unit cell in reciprocal space used for
the band structure calculations. The I', X and M points of high symmetry in
reciprocal space are shown. Due to the discretization method used in the
calculation scheme, we have only calculated the band structure along the I'X
and XM directions. We will consider dielectric cylinders of dielectric constant
¢ embedded in a background with ¢ = 1.0.

Fig. 2 shows the result of a band structure calculation for a square lattice
of silicon cylinders (¢ = 11.8, refractive index n = 3.45) in air. The radius-
to-pitch-ratio r/a was chosen to be 0.18 in this case. The vertical frequency
scale is given in dimensionless units. These can be converted to ordinary units
by specifying the pitch ¢ and the vacuum wavelength 4 of interest. Note that
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Fig. 1. Square lattice of dielectric cylinders. Indicated are the definition of the cylinder radius r and
the pitch a. The I', X and M points of symmetry in the square Brillouin zone are indicated in the figure.
The TE and TM polarizations are indicated in the right part of the figure, where the arrows indicate the
direction of the electric field vector.
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Fig. 2. Calculated band structure along the I'’X and XM directions for a square lattice of silicon cylinders
(¢ = 11.8) in air with r/a = 0.18, for TM and TE polarization. Due to the high index contrast a wide gap
opens between the first and second band for TM polarization. For TE polarization no band gap is

observed.
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the use of dimensionless frequency is natural in the case of Maxwell’s
equations, because these equations do not define a fundamental length scale.
Due to the high index contrast a wide gap opens between the first and second
band for TM polarization. The gap extends from wa/2nc = 0.30 to 0.44,
consistent with similar calculations for GaAs (Joannopoulos et al. 1995).

For TE polarization no band gaps are observed. This can be explained by
considering the polarization of a cylinder induced by an external field. If the
external electric field is directed along the long axis of the cylinder the cy-
linder is easily polarized resulting in a strong interaction of the cylinders with
TM polarized waves, whereas for TE polarization the polarizability of the
cylinder is small (Van de Hulst 1957).

Although we have calculated the band structure along the I'X and XM
directions only, the behavior along the I'M direction can be predicted for the
lower lying bands. Minima and maxima of a certain band are expected only
at points of high symmetry in the reciprocal space. Therefore the part of the
band along the missing 'M direction varies smoothly between the minima
and maxima already calculated at the I", X and M points. To design struc-
tures operating around 1.5 pm the pitch a should be chosen such that the
desired wavelength falls in the band gap region. For a pitch of 570 nm, the
midgap frequency corresponds to a wavelength of 1.536 um.

Fig. 3 shows the dependence of the band gap frequencies on the pillar
radius-to-pitch ratio r/a, extracted from band structure calculations as shown
in Fig. 2. The solid dots indicate the maxima and minima observed in the
bands of the calculated band structures for various values of r/a. The lines are
smooth curves through the points to guide the eye. The area enclosed by the
drawn lines indicates a band gap region. The first two band gaps could be
mapped out in this way. Two higher bands for larger r/a are observed but not
all points to map out the bands were calculated. The result of Fig. 3 can be
compared to calculations for GaAs (Winn et al. 1994; Joannopoulos et al.
1995) and are found to be similar, because the refractive indices at 1.5 um of
GaAs and Si are similar.

The widest band gap for a lattice of silicon cylinders (¢ = 11.8) is observed
for r/fa = 0.20, with a relative gap width of 38% (defined as the midgap
frequency divided by the gap width). To find the minimum dielectric constant
required for a band gap to occur in a square lattice for TM polarization, first
a calculation as in Fig. 3 was repeated for cylinders with ¢ = 4.0. It was
found that the widest gap in this case is observed for a r/a ratio of 0.25
(relative gap width 4%). Next, repeated band structure calculations as
function of the dielectric constant of the cylinders at a fixed r/a of 0.25 were
done. Fig. 4 shows the maximum frequency of the first band and the mini-
mum frequency of the second band as function of . The region enclosed by
the solid lines gives the gap between the first and second band. To find the
minimum dielectric constant the solid lines were extrapolated, resulting in a



DESIGN AND OPTIMIZATION OF 2D PHOTONIC CRYSTAL WAVEGUIDES 149

1.0 F—— T T ——T T —

08} -
< L \ 1
Q L ]
o 0.6 |- L\ \ -
A B ~
> I - ]
5 i ]
Q) 0‘4 i \X _
5 L ]
o
15} 3 i
[ -
L 3 i

0'2 | -@,‘_—: — —

I T T T NN S O AT T T T S MY S

‘O.2 IO.3
Radius (r/a)

00 b o 1 1

Fig. 3. Position of the band gaps for TM polarized light calculated for a square lattice of silicon cylinders
in air. The positions of the gaps were extracted from band structure calculations at various values of r/a,
depicted by the dots.
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Fig. 4. Band gap between the first and second band for TM polarization for a square lattice of cylinders in
air with r/a = 0.25 as function of the dielectric constant. A minimum dielectric constant of 3.8 (n = 1.95)
is needed for gaps to open. The inset shows the same data plotted in terms of the relative gap width,
defined as the gap width divided by the midgap frequency.

minimum dielectric constant of 3.8 (n = 1.95) for gaps to open for a square
lattice of cylinders (dashed lines). The inset shows the same data plotted as
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relative gap width. The upper frequency of the band gap, i.e. the minimum of
the second band at the M point, decreased linearly with the ¢ of the cylinders.

The refractive index requirement of at least 1.95 for a gap to occur for the
square lattice is just out of reach of standard polymers and glasses. The use of
silicon as a base materials for 2D photonic crystals seems natural because of
its high refractive index (n = 3.45) and because the microfabrication tech-
nology for this material is well characterized. For instance Si can be etched
anisotropically to high precision using reactive ion etching (Tachi et al. 1991;
Bartha et al. 1995; Zijlstra et al. 1999). The electronic band gap of silicon is
1.1 eV, corresponding to a wavelength of ~1.1 um in vacuum, yielding
transparent silicon in the near-infrared.

3. 2D Photonic crystal waveguides

The structures discussed so far all consisted of cylinders of infinite length. For
practical applications of 2D PBG materials, the photonic crystal must be
incorporated into a waveguide structure. In a simple treatment the PBG
effects take place in the plane of the photonic crystal, similar as in the case of
infinitely long cylinders, while index guiding in the dielectric waveguide
structure may be used to provide confinement of the light out of the plane of
the photonic crystal. In this section we will describe the design of such
structures using 2D band structure calculations combined with dielectric
waveguide theory. Although this approach gives a good idea of the typical
sizes and design parameters involved, only a full three-dimensional (3D)
calculation can resolve the more detailed characteristics of such a device
(Charlton et al. 1997; Charlton and Parker 1998; Astratov et al. 1999;
Astratov et al. 1999; Johnson et al. 2000).

To treat a photonic crystal using ordinary waveguide theory, the effective
index of a square lattice of silicon cylinders was evaluated as function of the
fill fraction f = m(r/a)* of cylinders. The effective index is obtained in the
long-wavelength limit from the linear part of the calculated dispersion rela-
tion near the zone center (k = 0):

6 —1
n == hm C —w

As can be seen in Fig. 2 there is a large difference in effective index for TM
and TE waves because of the difference in slope of the linear part of the
dispersion relation near k = 0. Fig. 5 shows the calculated effective dielectric
constant (left hand vertical axis) and effective refractive index (right hand
axis) as obtained numerically from band structures calculated at various r/a
ratios. Values are given as a function of fill fraction for the two polarizations.
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Fig. 5. Effective dielectric constant for a square lattice of silicon cylinders (¢ = 11.8) in air (¢ = 1.0). The
effective dielectric constant was derived from separate band structure calculations at each fill fraction. The
values obtained for TM polarization are shown by the solid dots, while the open circles show the results
for TE polarization. The dashed line indicates the effective ¢ as calculated from Maxwell-Garnett effective
medium theory. The solid line through the points for TE polarization is a guide to the eye.

Data are shown for TM (dots) and TE polarization (circles). The dashed lines
correspond to the Maxwell-Garnett effective medium theory for the two
polarizations. As can be seen, & for TM polarization increases linearly with
fill fraction, in perfect agreement with effective medium theory although the
theory is only exact for small fill fractions. The data for TE polarization show
an initial slow increase with fill fraction, roughly equal to what effective
medium theory predicts, followed by a much stronger increase for fill frac-
tions above 0.5.

Similar calculations as in Fig. 5 were also performed for dielectric con-
stants of the rods between 1.0 and 16.0. It was found that a linear increase in
eor Was observed for TM polarization in all cases; the result for TE polar-
ization was found to depend on both the fill fraction of rods and the dielectric
contrast of the lattice. For r/a values above 0.5 a lattice of star shaped holes
should be considered instead of dielectric cylinders.

To achieve (effective) index guiding in a 2D photonic crystal, it must be
sandwiched between two layers of lower dielectric constant. In waveguide
theory, TE and TM modes are defined as having their electric field (TE) or
magnetic field (TM) transverse to the interfaces of the sandwich. Following
this definition of waveguide modes for planar waveguide structures, the TE
waveguide mode corresponds to the TE modes of the photonic crystal. For
TM waveguide modes the electric field is nearly parallel to the long axis of the
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cylinders. However, there is a small component (<10%) that is perpendicular
to the cylinders. This can be seen directly when using the ray optic approach
for waveguide modes in which the light is confined by total internal reflection
of the rays. To calculate the effective index for TM waveguides we have
neglected this small effect.

While the in-plane propagation of electromagnetic waves is predominantly
described by the photonic band structure, the index guiding in the vertical
direction is governed by the polarizability of the cylinders (Van de Hulst
1957). The average polarizability is given by the effective index calculated in
the long wavelength limit. We can get an estimate of the vertical index
guiding using the effective index calculated from the band structure as long as
a significant amount of the electric field is contained in the dielectric cylin-
ders, making our approach most valid for the first dielectric band. Although
many practical devices make use of the PBG itself, where no propagating
modes exist, our results can be used to estimate mode mismatch and coupling
losses for devices with only a few rows of rods, or devices making use of the
strong dispersion near the band-edge where propagating modes do exist. Our
model gives a simple estimate of the required minimum length of the cylin-
ders to prevent the light from leaking to the substrate in such a case. For
devices employing higher lying bands our approach overestimates the index
guiding, since a large fraction of the electric field is concentrated outside the
dielectric cylinders.

In the following we will discuss three materials systems based on silicon in
which index guiding in a 2D photonic crystal may be achieved. The first two
rely on creating a spatial variation of the index along the Si pillars using
either a-Si or SiGe. The third makes use of a SOI substrate where the Si
pillars are placed on a planar insulator (Si0,) layer, which has a significantly
lower refractive index. For all these materials waveguiding in a channel
waveguide was shown experimentally (Emmons et al. 1992; Cocorullo et al.
1998; Schiippert and Petermann 1998).

3.1. AMORPHOUS SILICON

Amorphous silicon (a-Si) can be made by ion irradiation of a single crystal Si
(c-Si) substrate. We have studied 4 MeV Xe irradiation at 77 K that creates a
2 uwm thick a-Si on ¢-Si. Structural relaxation at 500 °C for 2 h in a vacuum
furnace was performed to remove point defects and to relax the a-Si network
structure (Roorda et al. 1991). The refractive index of the a-Si layer was
measured by variable angle spectroscopic ellipsometry (not shown) and is
3.73 at 1.5 um, significantly higher than that of ¢-Si (n = 3.45). This result is
similar to that found for a-Si made by ion irradiation using other ions
(Waddell et al. 1984). Ellipsometry and transmission measurements on 2 um
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thick amorphous layers gave no indication for measurable optical absorp-
tion, from which we estimate that the absorption coefficient of amorphous
silicon at 1.5 um is smaller than ~50 cm™". Hence, a-Si would be a suitable
waveguide material in a photonic crystal with dimensions in the order of
10 um. However the optical loss may still be significant for a cm long input/
output waveguide integrated with the photonic crystal.

Using an a-Si top section of the pillars in a photonic crystal, the a-Si
thickness and the pillar length (etch depth) should be chosen such that there
is a minimal coupling to the bulk Si substrate. Considering only TM modes,
the effective index of crystalline silicon cylinders at the optimum r/a of 0.18 is
1.45, as obtained from Fig. 5. Similarly the effective index for a-Si pillars with
rla = 0.18 is found 1.52.

Calculations to estimate the optical mode profile in the vertical dimension are
shown in Figs. 6 and 7. Fig. 6a shows the solution of the propagation constant
p,1.e. the component of the wavevector in the direction of propagation, for TM
modes as function of the a-Si guiding layer thickness. The waveguide structure
consists of crystalline silicon pillars (n.y = 1.45) with an a-Si section (negp =
1.52), in air (n = 1.00). For an a-Si layer thickness up to 2.5 pm the planar
waveguide structure only supports a single TM mode. The corresponding
propagation constants in a planar waveguide made of a-Si on top of crystalline
silicon are shown in Fig. 6b. Because of the large indices and relatively large
index contrast, such a planar waveguide supports many modes and has prop-
agation constants that differ very much from that of the PBG waveguide.

The field distribution of the zeroth order modes in the PBG waveguide are
shown in Fig. 7. Modes are compared for three different a-Si thicknesses of
1.0, 2.0 and 2.5 um. The modes were normalized such that the power flow for
all the modes is the same. It can be seen from the figure that for a 1.0 pum
thick a-Si layer the mode penetrates deep into the substrate. Thicker a-Si
layers show better confinement for the zeroth order mode, such that almost
all energy is confined within a layer of 5 pm long cylinders.

For practical applications one should keep in mind that deep anisotropic
etching for the PBG structures is limited to an etch depth of ~5 pum (Zijlstra
et al. 1999). Amorphization up to a depth of 2 um can be done using e.g.
4 MeV Xe ion irradiation into a planar Si wafer. Subsequently pillars can be
etched, resulting in crystalline Si pillars with an a-Si top section. Therefore it
is concluded that the fabrication of a structure based on a-Si should be
possible.

As discussed earlier the propagation constant of the planar a-Si waveguide
differs from that of the PBG waveguide. Because practical devices will most
likely combine both planar waveguides and PBG waveguides it is important
to consider the power coupling efficiency # between the planar waveguide and
the PBG waveguide. We have assumed a butt-end coupling of the two
waveguides. In that case the coupling efficiency # is given by (Pollock 1995):
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Fig. 6. Calculated propagation constant and waveguide modes for an a-Si/c-Si photonic crystal wave-
guide structure. (a) Propagation constant for the PBG structure, using effective indices of 1.52 and 1.45, as
function of a-Si thickness. (b) Propagation constant for a planar waveguide of a-Si on ¢-Si as function of a-
Si thickness.
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where f; and f; are the propagation constants of the incoming and trans-
mitted waveguide mode. E; and E; are the normalized electrical field ampli-
tudes of the modes.

Using the calculated propagation constants for both the PBG waveguide
and the planar waveguide the coupling efficiency between the fundamental
modes was calculated for a 1.0 um and a 2.0 pum thick a-Si waveguide. The
calculated coupling losses expressed in dB are summarized in Table 1. As can
be seen the coupling losses are larger for the 1.0 um thick guide. This can be
explained from the fact that in the PBG waveguide a large fraction of the
mode propagates outside the guiding layer (mode confinement = 0.45, see
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Fig. 7. Field strength of the calculated waveguide modes for a-Si thicknesses of 1.0 pm (———), 2.0 um
(—) and 2.5 pm (- - -). The modes were normalized such that the power flow is the same for each mode.

Table 1. Comparison of the calculated coupling efficiencies # in dB for a-Si, SiGe and SOI waveguide
structures

Waveguide rla Layer Coupling Mode confinement
material thickness d (um) efficiency 7 (dB) r
a-Si 0.18 1.0 -3.6 0.45
0.18 2.0 -1.3 0.90
Si0>7sGeo_25 0.18 2.0 -3.0 0.54
0.18 4.0 -1.3 0.89
SO1 0.20 2.0 -1.1 0.90
0.20 1.5 -1.9 0.70

The table shows the coupling efficiency and mode confinement for various thickness of the guiding layer
thickness. The modes with good confinement have smaller coupling losses. The remaining coupling loss is
mostly due to reflection.

Table 1) where the planar waveguide shows good confinement. The coupling
losses for the 2.0 um thick waveguide of —1.3 dB is partly due to a reflection
of —0.9 dB caused by the difference in refractive index between the guiding
layer of the incoming planar waveguide and the photonic crystal waveguide
(we have only considered coupling losses between the fundamental modes,
because coupling from a higher order mode to the fundamental mode leads
to much higher coupling losses meaning that these modes do not propagate
through the structure).

The rest of this paper summarizes the possibilities and coupling losses for
similar structures, made using either SiGe on Si or SOI as a waveguide
material. These results are summarized in Table 1 as well.
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3.2. SILICON GERMANIUM

Silicon—germanium dielectric waveguides have been fabricated and show
excellent transparency at 1.5 um (Emmons et al. 1992), making SiGe an in-
teresting candidate for photonic crystal waveguides. Here we consider the
case similar as in Section 3.1 with pillars composed of a SiGe guiding top
section on top of a Si pillar. The refractive index of the SiGe layer is higher
than that of pure Si and depends on the atomic fraction of Ge. The band gap
energy depends on the relative Si/Ge concentration and varies between the
band gap of pure silicon (1.15 e¢V) and pure Ge (0.74 ¢V) for fully relaxed
layers (Kasper 1995).

To fabricate structures with a similar index contrast as discussed for a-Si, a
Ge atomic fraction of 50 at.% is needed. It is very difficult to fabricate SiGe
waveguide layers with such a high Ge content on one hand and have low
optical losses on the other hand (Emmons et al. 1992). We have therefore
limited the atomic fraction of Ge to 25%. For a Ge content of 25 at.%, the
Sig75Geg s layer has a refractive index of 3.53 and a band gap of 1.06 eV,
corresponding to a wavelength of 1.17 um in vacuum and will hence be
transparent at 1.5 pm. For a PBG structure with r/a = 0.18 the effective
index of the SiGe layer is 1.47, giving a relatively small index contrast with
the pure Si pillars underneath (n.gy = 1.45).

Consequently the mode size for a 2.0 pm thick Sig75Geg -5 waveguide is
bigger than that of a 2.0 um thick amorphous waveguide and the mode is less
well confined in the photonic crystal waveguide. Therefore a 2 um thick SiGe
waveguide leads to a relatively high coupling loss of —3.0 dB. The reflection
loss of —0.8 dB is comparable to that of the a-Si waveguides. To improve the
coupling the SiGe layer thickness can be increased to 4.0 um giving a com-
parable coupling loss as the 2.0 um thick a-Si waveguide as shown in Table 1.
However, to avoid coupling to the substrate a total etch depth of 810 pm is
required, making the fabrication of these SiGe structures less attractive.

3.3. SILICON-ON-INSULATOR

SOl is a commercially available material with high optical quality, consisting
of a single crystal Si layer separated from the Si substrate by a SiO, layer.
Devices can be made by etching cylinders in the thin Si layer only, leaving the
SiO, layer intact. As already pointed out, the effective refractive index of a
square array of crystalline Si cylinders is 1.45 for r/a = 0.18. The refractive
index of SiO, is 1.45, which means that no index guiding can be achieved in
an array of silicon pillars on SiO, with r/a smaller than 0.18. To achieve
similar modes as calculated for a-Si one has to increase r/a such that the
effective index increases to 1.52, corresponding to r/a = 0.20.



DESIGN AND OPTIMIZATION OF 2D PHOTONIC CRYSTAL WAVEGUIDES 157

Commercially available SOI wafers using the ‘smartcut’ process typically
have a maximum oxide thickness of 3 um. The Si layer on top is limited to
1.5 um, although it can be grown thicker using epitaxial growth. For our
calculations we used a thickness of 2.0 um as a starting point to compare the
waveguiding properties with that of the a-Si structures. The results of the
calculation are shown in Table 1. A 2.0 um thick SOI layer with r/a = 0.20
has the same waveguide modes as an a-Si structure with r/a = 0.18.
Therefore the mode overlap is the same. The difference in coupling efficiency
with the a-Si structure is entirely due to a somewhat smaller reflection co-
efficient of —0.7 dB. For a layer thickness of 1.5 um the mode confinement is
smaller resulting in larger coupling losses.

For SOI structures the coupling losses can be further reduced by increasing
the fill fraction of silicon. In this way the index contrast between the guiding
layer and surroundings is increased leading to better confined modes with
better overlap. In addition, the reflection loss is also reduced, because the
refractive index difference between the incoming planar waveguide and the
photonic crystal waveguide is reduced. For example for a 1.5 pum thick SOI
layer with r/a = 0.25, the coupling loss is reduced to —0.6 dB, while the
reflection is —0.5 dB. It should be noted however, that in this case both
incoming and photonic crystal waveguides are multimode so that coupling
between higher order modes should be considered. By definition these modes
are less well confined (having a smaller propagation constant) and thus
higher losses. In all the structures discussed we only considered propagation
of TM polarized modes, because all layer thicknesses are still below the cut-
off condition for TE modes in the photonic crystal waveguide.

4. Conclusions

Using the transfer matrix method we have explored the existence of PBGs for
a square lattice of dielectric rods. Band gaps were only observed for TM
polarization. By calculating the band structure as function of both the pillar
r/a and the dielectric constant of the cylinders it was found that a minimum
refractive index of 1.95 (¢ = 3.8) is needed for a band gap at the optimum
rla = 0.25. For a higher dielectric constant of 11.8, corresponding to the
dielectric constant of Si at 1.5 pm, the largest band gap was observed for
rla = 0.20, with a relative gap-width of 38%. Band structure calculations as
function of r/a revealed up to four PBGs for TM polarization in a square
lattice of silicon rods.

To design photonic crystal waveguides, the effective index was derived
from the band structure calculations. For TM polarization the effective index
corresponds to the result obtained from Maxwell-Garnett theory. We have
calculated and compared waveguiding properties of photonic crystal wave-
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guides operating around 1.5 um using waveguide theory. Index guiding was
achieved using a-Si, Siy 75Geg »5 or SOI. It was concluded that the fabrication
of a-Si and SOI structures is possible, while fabrication of SiGe structures is
difficult because of the large etch depths needed. The coupling losses for
butt-end coupling of a planar waveguide to a photonic crystal waveguide
were found to vary between —1.1 and —3.6 dB, which can be explained from
the difference in mode confinement of the photonic crystal waveguide. A
large fraction of the coupling loss is caused by reflection losses which were
found to vary between —0.9 dB for a-Si structures and —0.7 dB for SOI
structures. Full 3D mode calculations are required to study the coupling in
more detail.
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