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Abstract

In this study we used the detailed balance model to calculate efficiencies of multi-junction solar cells,
varying the number of subcells, the concentration of solar light, the limiting angle for emitted light and the
non-radiative recombination rate.

We first explain the detailed balance model and how it leads to the Shockley-Queisser formalism if one
makes the assumption Eg − qVoc � kT .

Using this model, limiting efficiencies for a solar cell with 1 to 8 junctions are obtained, assuming only
blackbody radiative losses with both maximum concentration and no concentration. Optimal bandgap
values are found. It is observed that using more than 5 junctions in a multi-junction cell offers only minimal
gain in efficiency (∼ 2% efficiency per junction added).

Next, efficiencies for more realistic solar cells with 1-8 junctions are calculated, based on existing, abun-
dant materials with bandgaps close to the optimum values that were found, and taking into account also
non-radiative losses. It is found that concentration is a useful means to increase efficiency of the solar cell
for any non-radiative recombination rate. However, the effect of angular restriction of emitted light becomes
almost negligible (≤ 2% increase in efficiency) for more than 10 % of the recombination being non-radiative.

Finally, a detailed analysis of the single junction c-Si cell and the 5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP
cell is performed. This shows that the former has a potential efficiency of 30.7 % for unconcentrated light and
38.3 % for a concentration of 1000 suns, and the latter has potentially 53.8 % efficiency for unconcentrated
light and 64.5 % for a concentration of 1000 suns. The detailed insight into the contributions of loss processes
solar cells that is provided in this study, is summarized in this last section and losses are compared and
explained for these two particular cases.
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1 Introduction

Contrary to intuition, a solar cell resembles a steam engine in more ways than one would suspect. Despite the
obvious differences in appearance, applications and operation mechanism, both these energy conversion devices
are ultimately limited in their efficiency by the same laws of thermodynamics. These laws can be applied to
solar cells, the same as for any other energy conversion device, to obtain an upper limit on efficiency that is
independent of most material parameters. It turns out that, just as for an old-fashioned steam engine, a solar
cell is ultimately limited by the Carnot efficiency. Such a thermodynamic description of a solar cell can be very
convenient when compared to conventional methods of modeling solar cell efficiencies, which employ material
parameters such as carrier diffusion length and lifetimes, because it allows for a fast assessment of the cells
performance.
Using a thermodynamical description employing energy and entropy exchanges, as was done by several authors,
different expressions for limiting efficiencies can be obtained such as the Carnot limit (95%) or the Landsberg
limit (93.3%), depending on which assumptions are made [1–3]. These models are very generic and can be
applied to photovoltaic solar cells as well as e.g. photochemical, photothermal or photosynthetic convertors [4].
There is however also another model describing solar cell performance which is designed specifically for pho-
tovoltaic convertors: the detailed balance model. It does not employ energy and entropy exchange but the
statistical balance of generation, extraction and recombination of charge carriers. It is however consistent with
the thermodynamical approach, and can be shown to be equivalent [4,5]. In this work, we will use the detailed
balance model to calculate efficiencies of solar cells in various circumstances.

The detailed balance model has been known for over 50 years now, and has been used by many authors
to model solar cell efficiencies. Shockley and Queisser were the first to use it for modeling a single junction
solar cell, taking into account only radiative losses [6]. As new concepts for improving the efficiency of solar
cells arose, other authors incorporated these into the model and studied their influences on solar cell efficiency.
It was for instance conceived that concentrating solar light on a cell would improve efficiency, an effect that
by now has been confirmed by experiments [5]. Multi-junction solar cells, cells consisting of multiple subcells,
each with a bandgap optimized for a different part of the solar spectrum, have been thoroughly studied as well
using the detailed balance model [2, 7–9]. More recently, the possibility of angular restriction, i.e. limiting the
solid angle under which light emitted by the cell can exit the cell, was studied for its potential improvement of
the efficiency of GaAs cells, taking into account also the contribution of non-radiative recombination [10,11].

In this study, we systematically analyse the influence of all these effects simultaneously. The number of
subcells in a multi-junction cell, the concentration of solar light, the limiting angle for emitted light and the
non-radiative recombination rate are all varied and their effect on efficiency is studied. This provides detailed
insight in the relative contribution of different loss processes in both single junction and multi-junction solar
cells. On the basis of this analysis, materials are suggested for use in these solar cells. For these materials, the
conditions are set that they must be abundant, non-toxic and obtainable in an economically feasible manner.
Only in this way can the application of solar photovoltaic power generation ever be scaled to proportions
suitable for supplying energy on a terawatt scale.
In the first part of this study, ideal efficiency limits were found for cells with 1 to 8 junctions by optimizing
bandgap values, assuming only radiative recombination. Secondly,more realistic calculations of efficiency are
performed for these cells, based on existing materials and including non-radiative recombination effects. Finally,
two particular cases of solar cell configuration are studied more closely: the single junction c-Si cell and the
5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell. The different loss processes in single and multi-junction solar cells
are compared and further explained through these two examples.
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2 Theory

...every theoretical physicist who is any good knows six or seven different theoretical
representations for exactly the same physics.

Richard Feynman

As is the case in so many fields of physics, the efficiency of a solar cell can be derived through completely dif-
ferent methods, as was mentioned above. One of those is the detailed balance model, which was first presented
in 1961 by Shockley and Queisser, and it has been the standard model for calculating solar cell efficiencies
ever since [6]. There are other models such as those based on energy and entropy exchange and those that
employ the electron transport equations. However, the detailed balance model is usually preferred because it
is relatively simple and insightful, and it requires much less extensive calculations than for example the more
realistic models using the electron transport equations.

The detailed balance model is based on the statistical balance of electron-hole generation and recombination:

Jout = q(Fl − Frec) (1)

Here, Jout is the current that is extracted from the cell, Fl is the rate of generation of electron-hole pairs due
to absorption of incident light, and Frec is the total rate of carrier recombination, which is assumed to be at
least partly radiative. q denotes the elementary charge. Note that all currents here are expressed in current
per unit cell area. From this equation current voltage characteristics can be derived, as well as the efficiency
of the solar cell.
Since the first version was presented in 1961, several authors have extended the detailed balance model [4,12].
Their main contribution was to remove some approximations that lead to erroneous results in the case of large
ratios of photo-generated current to dark current, for instance due to concentration of the sunlight. This has
lead to the exact detailed balance model, which we shall discuss below. After this we shall show how from
the exact model, one obtains the original model proposed by Shockley and Queisser by using the ideal diode
approximation. Finally, the Shockley Quiser model will be adjusted for a multiple junction solar cell. However,
first we will obtain an expression for the ultimate efficiency of a solar converter without using any current
voltage characteristics. This will give us some insight in two of the principle fundamental losses in a solar cell;
thermalization and loss of sub-bandgap light.

2.1 Ultimate Efficiency

In this section, the goal is to calculate the ultimate efficiency ηult for a solar converter with a certain cut-off
photon energy, in this case given by the bandgap energy Eg. It is based on the assumption that all photons with
energy E larger than Eg are absorbed, and all photons with energy smaller than Eg are not. It is also assumed

that each photon that is absorbed generates one electron-hole pair that is extracted at a voltage Vg =
Eg

q .
This implies that this solar converter has only two sources of loss: sub-bandgap light that is not absorbed and
thermalization of high-energy carriers, which lose their excess energy above Eg. These losses are indicated in
Fig. 1.

The efficiency of such a device is then given by the following expression:

ηult =
EgQs(Eg)

Ps
(2)

Qs(Eg) is the number of photons in the solar spectrum with energy higher than or equal to the bandgap
energy, that is E ≥ Eg. Ps is the power of the solar irradiation, integrated over the full spectrum. Qs and Ps
can be expressed in the following way:

Qs(Eg) =

∫ ∞
Eg

S(E) dE (3)

Ps =

∫ ∞
0

E S(E) dE (4)

S(E) denotes the solar photon number spectrum, i.e. the incoming amount of photons in the solar irradiation
on earth per m2 per spectral unit. Several spectra have been used in various efficiency calculations in the
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Figure 1: Loss processes that determine the ultimate efficiency of a solar converter with a cut-off frequency. High
energy photons (blue) create carriers that thermalize, i.e. lose their excess energy. Photons with energies below the
bandgap (red) cannot create free charge carriers, therefore they are not absorbed. e− and h+ denote electrons and
holes, respectively. EV , EC and Eg indicate respectively valence band, conduction band and bandgap energies.

literature, such as the ideal blackbody spectrum for a blackbody at a temperature T=6000 ◦K [6], the AM0
spectrum or the AM1.5 spectrum [2,4]. In this work, we shall use the AM1.5 spectrum.
ηult has a maximum for a certain Eg, since the numerator in Eq. 2 vanishes for Eg approaching 0 as well as
Eg approaching ∞. Indeed, as can be seen in Fig. 2, the maximum for ηult lies at Eg ≈ 1.12 eV.
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Figure 2: The ultimate efficiency for a single junction solar convertor as a function of its bandgap energy, under AM1.5
spectrum illumination. The maximum of 49 % occurs for a bandgap of 1.2 eV.

This ultimate efficiency is not an efficiency that a realistic solar cell could reach, since inevitable, fundamental
losses will occur due to blackbody radiation from the cell. However, it will serve us as an absolute upper limit
on the efficiency a the solar cell, which the efficiency obtained with a more realistic model cannot exceed. This
is useful as a ward against computational errors.
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2.2 The Exact Model

In this section, we will present a derivation from first principle of the exact detailed balance model, which
predicts theoretical efficiencies for solar cells.

For the exact efficiency of a solar cell, consider again equation 1:

Jout = q(Fl − Frec),

which is the starting point of our analysis. Carrier recombination rate Frec and generation rate Fl shall be
discussed below, after which an expression for the cell efficiency will be derived.

2.2.1 Carrier Recombination

The second term Frec is the carrier recombination rate, which we assumed to be zero in the calculation of ηult.
It can be written here as:

Frec = Rradrec +Rnon−radrec , (5)

with Rradrec and Rnon−radrec being the radiative and non-radiative recombination rate, respectively.

The radiative recombination rate originates from the cells blackbody radiation, more specifically it is the
part of the cells blackbody spectrum that lies above the bandgap energy. For an emitter with emissivity tc and
a back reflector this is given as [3]:

Rradrec = tc
2εc
c2h3

∫ ∞
Eg

E2

e(E−µ)/kTc − 1
dE (6)

Here εc denotes the étendue (per unit area) of the emitted radiation, which can be written as εc = π sin2(θlim).
θlim refers to the maximum angle with respect to the vector normal to the cell surface under which radiation
can be emitted. See appendix A for the derivation. c, h and k are the speed of light, the Planck constant and
the Boltzmann constant respectively, and Tc is the cell temperature. µ corresponds to the chemical potential
of the emitted photons, which is zero for a system in thermal equilibrium [7].1

However, a p-n junction solar cell under illumination is not in thermal equilibrium, and the photon chemical
potential is equal to the separation of the electron and hole quasi-Fermi levels [7]. This can be understood by
considering that the chemical potential is defined as the free energy brought to the system by the addition of a
photon, other than the photon energy hν. This free energy comes from the relaxation of the carriers from their
exited state, with which an energy is associated equal to the separation between the quasi-Fermi levels. This
separation also equals qV , where V is the voltage over the cell [7]. We thus obtain the following expression for
Rradrec :

Rradrec = tc
2εc
c2h3

∫ ∞
Eg

E2

e(E−qV )/kTc − 1
dE (7)

The non-radiative recombination rate Rnon−radrec is not easily obtained. Its origins compose of Auger recom-
bination, bulk defect recombination and surface defect recombination. One can use an explicit expression to
account for Auger recombination [10], or even an empirical expression for bulk defect and surface defect re-
combination [5], but this makes the analysis more complex and calculation time significantly longer. Moreover,
the former two recombination types are device-dependent and therefore not relevant in the calculation of a
theoretical upper limit to the efficiency.
In stead, we could use the external quantum efficiency (EQE) of radiative recombination to define the non-
radiative recombination rate [10]. This macroscopic parameter that incorporates the contributions of all sources
of non-radiative recombination is usually defined as the ratio between the fraction of the radiative recombina-
tion rate that escapes the cell and the total recombination rate. However, Rradrec can be varied by varying θlim
or tc, leading to a variation in EQE as well. We want to define a parameter describing the contribution of

1Note that if one sets µ to zero, assumes a perfect emitter (tc = 1) and assumes that there is no mechanism that limits the angle
of the outgoing blackbody radiation, i.e. θlim = 90◦ and εc = π, one obtains the usual expression for the blackbody radiation of
temperature Tc, in units of W/m2J.
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non-radiative recombination that is independent of θlim and tc, such that we can study these effects separately.2

For this purpose, we define the parameter χ as the EQE for a cell with tc = 1 and θlim = 90◦:

χ ≡ Rrad, π, 1rec

Rrad, π, 1rec +Rnon−radrec

, (8)

where Rrad, π, 1rec is the radiative recombination rate for tc = 1 and εc = π, that is θlim = 90◦.
Rnon−radrec is then:

Rnon−radrec = Rrad, π, 1rec

(
1− χ
χ

)
=

π

εc ts
Rradrec

(
1− χ
χ

)
(9)

2.2.2 Carrier Generation

The first term on the right side of Eq. 1, Fl, is the rate of generation of carriers due to the absorption of
incident light and is given by:3

Fl(Eg) = ts C Qs(Eg) (10)

ts is the probability that an incoming photon with E ≥ Eg creates an electron-hole pair, and depends on the
reflectivity of the cell, the absorption coefficient of the material and light trapping in the cell. In this work we
shall not consider the effect of these parameters, so we shall set ts to unity. This can be realized in practice by
using state of the art antireflection coatings [13] and a cell that is sufficiently thick or employs effective light
trapping [14].
C denotes the concentration factor of the sunlight, and is a dimensionless quantity. C is 1 for unconcentrated
sunlight under normal incidence, and has a maximum value of ∼ 46000. This maximum is given by the ratio
of the maximum étendue of light falling on a planar surface (π) and the étendue of the sunlight on earth. For
sunlight under normal incidence, the latter is given by (in analogy with Eq. 36):

εs = πsin2(θs) with θs = arcsin

(
Rsun
Dsun

)
so that

εs = π
R2
sun

D2
sun

(11)

Here, θs denotes the angle that the edge of the sun makes with the normal vector to the surface of the solar
cell, analogues to θlim for emitted light. Rsun and Dsun are the radius of the sun and the distance between the
earth and the sun, respectively. Cmax is then:

Cmax =
π

εsun
=
D2
sun

R2
sun

≈ 46000, (12)

i.e. a concentration of 46000 suns. Finally, Qs is the number of photons in the solar spectrum with energy
higher than or equal to the bandgap energy, as given by Eq. 3.

2.2.3 Efficiency

With this information on the carrier generation and recombination, we can now set out to derive an expression
for the efficiency of the cell. The incoming power Ps per unit area on the solar cell is given by Eq. 4. The

2A parameter that satisfies this condition and that is commonly used in previous studies [10, 15], is the internal quantum
efficiency (IQE). However, to correctly link IQE to EQE, as is done by Kosten et al., knowledge of material parameters such as
absorption coefficient, thickness and refractive index is required. These are parameters that we want to avoid in this work, because
our results should be independent of material choice.

3One could also add a third term to the right side of eq. 1, to account for the incident background radiation, as some authors
have done [4]. This can be an important contribution for a solar cell under diffuse illumination, but we do not consider this case
here. In our case, the background radiation could be modelled as blackbody radiation from a body at the same temperature as
the cell, usually taken to be 300 ◦K, which is completely negligible compared to the solar illumination.
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output power of the solar cell is defined as the product Jout V . The efficiency is then, according to Eq. 1, 5
and 9:

η =
V Jout
Ps

=
qV

Ps

(
Fl −Rradrec −Rnon−radrec

)
=

qV

Ps

(
Fl −Rradrec (1 +

π

εc tc χ
− π

εc tc
)

)
(13)

To obtain the maximum efficiency of a cell with Eg given, η must be optimized by varying V .

Eq. 13 is an exact result and applies to all types of illumination spectra and concentration factors. It is
however a laborious procedure to optimize η with respect to Eg using this model, particularly for multi-junction
solar cells where multiple bandgaps need to be varied. It is therefore useful to make an assumption that greatly
simplifies the calculation, as we shall discuss below.

2.3 The Original Shockley-Queisser Model

In this section we discuss how, starting from the exact model as described above, one obtains the original
detailed balance model as it was presented by Shockley and Queisser [6]. Although this model does not predict
exact efficiencies under all circumstances, its advantage is that the calculation that is required to produce an
efficiency is simpler and shorter.
In the first section we derive the ideal diode equation, starting from the exact model and taking an approx-
imation valid for low cell voltages. In the second and the third section, we use the ideal diode equation to
obtain expressions for open circuit voltage Voc and fill factor FF , respectively. In the last section, we present
the expression for efficiency that emerges from the Shockley-Queisser model and includes Voc and FF .

2.3.1 The Ideal Diode Equation

Here we derive the ideal diode equation. If one makes the assumption that cell voltage never approaches the
bandgap energy Eg, that is:

Eg − qV � kTc, (14)

Rradrec (Eq. 7) can be rewritten as:

Rradrec
∼= tc

2εc
c2h3

∫ ∞
Eg

E2

e(E−qV )/kTc
dE

= tc
2εc
c2h3

∫ ∞
Eg

E2

eE/kTc
dE e

qV
kTc

= Rrad0 (tc, εc, Eg) e
qV
kTc , (15)

with

Rrad0 (tc, εc, Eg) = tc
2εc
c2h3

∫ ∞
Eg

E2

eE/kTc
dE (16)

Here, q Rrad0 (tc, εc, Eg) denotes the dark current J0 in the cell in the case that there is only radiative recombi-
nation (χ = 1).

The following current-voltage relation is then obtained from Eq. 1:

Jout = q
(
Fl −Rradrec −Rnon−radrec

)
= q

(
Fl −Rradrec (1 +

π

εc tc χ
− π

εc tc
)

)
= q

(
Fl −Rrad0 (1 +

π

εc tc χ
− π

εc tc
) e

qV
kT

)
= q

(
Fl −Rtot0 e

qV
kTc

)
(17)

7



where
qRtot0 = Rrad0 (1 +

π

εc tc χ
− π

εc tc
) (18)

now represents the dark current J0 in the cell, including the contribution of non-radiative recombination (for
χ 6= 1).

For this result, only the approximation in Eq. 14 was used. With the use of another approximation, it can
be shown that this equation is equivalent to the ideal diode equation. Rewriting Eq. 17 as follows:

Jout = q
(

(Fl −Rtot0 )−Rtot0 (e
qV
kTc − 1)

)
, (19)

and recognizing that for all practical purposes, Fl � Rtot0 , we arrive at the familiar equation for an ideal diode
under illumination:

Jout = q
(
Fl −Rtot0 (e

qV
kTc − 1)

)
= Jsc − J0 (e

qV
kTc − 1), (20)

Where Jsc = Jl is the light-generated current or short-circuit current and J0 the dark current.

2.3.2 Open Circuit Voltage

Here we derive an expression for the open circuit voltage Voc, using the ideal diode equation (Eq. 20). With
the current-voltage relation of the cell given by the ideal diode equation, the open circuit voltage Voc can be
obtained by setting Jout = 0:

Voc =
kTc
q

ln(
Jsc
J0

+ 1)

∼=
kTc
q

ln(
Jsc
J0

) (21)

Using Eqs. 10 and 18 we can rewrite this as:

Voc =
kTc
q

ln

(
ts C Qs(Eg)

Rrad0 (tc, εc, Eg) (1 + π
εc tc χ

− π
εc tc

)

)

=
kTc
q

ln

(
εs ts C Qs(Eg)

tc εcRrad0 (1, εs, Eg) (1 + π
εc tc χ

− π
εc tc

)

)

=
kTc
q

{
ln

(
Qs(Eg)

Rrad0 (1, εs, Eg)

)
+ ln

(
C εs

εc tc + π
χ − π

)
+ ln (ts)

}
(22)

with εs = π
(
Rsun

Dsun

)2 ∼= 6.80 · 10−5 denoting the étendue of the unconcentrated solar radiation.

For a cell under unconcentrated illumination, with maximum angular restriction of outgoing light (i.e.
εc = εs ), only radiative recombination (χ = 1), unity emissivity and perfect absorption (tc = ts = 1), all
terms but the first in Eq. 22 are zero. This corresponds to the maximum possible efficiency achievable by a
solar cell. The second term in Eq. 22 can only be zero or negative, since the étendue of the outgoing light, εc,
must be larger than or equal to C εs, the étendue of the incoming light. In other words, photons can always
exit along the same path as they entered. The last term in Eq. 22 depends on the absorptivity and reflectivity
of the cell. In this work, ts and tc are always set to unity, so this term vanishes.

2.3.3 Fill Factor

Here we use Eqs. 20 and 21 to derive an expression for the fill factor FF . The fill factor is defined as:

FF ≡ Vmax Jmax
Voc Jsc

, (23)

8



J Jmax

Jsc

Vmax Voc

V

Figure 3: An example of a solar cell J-V characteristic, with Vmax and Jmax indicating respectively the voltage and
current at maximum power point. Voc and Jsc denote open circuit voltage and short circuit current, respectively. The
fill factor is the shaded area subtended by the green box , divided over the area subtended by the red box.

with Vmax and Jmax the voltage and current at maximum power point, respectively. These are illustrated in
Fig. 3.

By optimizing the output power

Pout = V · Jout(V ) = V
(
Jsc − J0 (e

qV
kTc − 1)

)
(24)

with respect to voltage V , one obtains an expression for Vmax. Vmax is the solution to the equation:(
1 +

qVmax
kTc

)
e

q
kTc

(Vmax−Voc) = 1 (25)

With Vmax given as a function of Voc and Tc, Jmax is given by eq. 17. This gives the following expression
for the fill factor: 4

FF =
Vmax
Voc

(
1− e−

q
kTc

(Voc−Vmax)
)

(26)

Note that, because Vmax is a function of Voc and Tc only, FF also depends only on Voc and Tc, in the case
of an ideal diode.

2.3.4 Efficiency

The efficiency of the solar cell is then given as:

η =
Vmax Jmax

Ps

= FF
Voc Jsc
Ps

(27)

This expression has a significant advantage over the exact solution in Eq. 13: no numerical optimization of
η with respect to V is necessary. In stead, Eq. 27 gives the efficiency at maximum power point automatically,
as this is captured in the factor FF .

For any solar cell under unconcentrated light with θlim = 90◦, the approximation in Eq. 14 is valid, so
the ideal diode equation (Eq. 17) and the corresponding efficiency (Eq. 27) holds. On the other hand, for
concentrated sunlight, or if χ ≈ 1 and θlim is very small, cell voltages may be almost as high as Eg/q, at which
point the approximation breaks down. In appendix B, we show that despite this, efficiencies obtained using
the ideal diode equation remain valid within a small error.

4In obtaining this expression, one makes the assumption that exp
[
qVmax
kTc

]
� 1. This expression thus breaks down for high

temperatures or small Vmax, i.e. small Eg or weak illumination. For all our purposes however, Eq. 26 holds.
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2.4 Multi-junction Solar cells

If we consider the case where we have a solar cell that consists not of a single p-n junction but of multiple
junctions with different bandgaps that each absorb a different part of the solar spectrum, our expression for
the efficiency should be slightly modified. The analysis is slightly different for cells with tandem geometry than
for cells with a spectrum splitting device [7], but we shall only concern ourselves with the latter. Furthermore,
we shall assume that the ideal diode approximation is valid, such that the single cell efficiency is correctly
described by Eq. 27.

For the i-th subcell in a multi-junction solar cell with bandgap Eig, where E1
g > E2

g > ... > Eig > ..., the
short circuit current is given by:

J isc = q ts C Q
i
s (28)

where

Qis =

∫ Ei−1
g

Ei
g

S(E) dE (29)

This expression assumes that there is some perfect mechanism for splitting the solar spectrum, directing each
part of the spectrum to the corresponding subcell without any losses.

The dark current is denoted by:

J i0 = q Rrad,i0 (tc, εc, E
i
g)

(
1 +

π

εc tc χ
− π

εc tc

)
(30)

with

Rrad,i0 (tc, εc, E
i
g) = tc

2εc
c2h3

∫ ∞
Ei

g

E2

eE/kTc
dE (31)

in analogy with Eq. 16. We assume that C, tc, ts and χ do not differ between the subcells. It is also implicitly
assumed in Eq. 31 that the area of a subcell remains the same irrespective of the number of subcells.

Finally, with these expressions for J isc and J i0 the efficiency of the N -junction solar cell is:

η =
1

Ps

N∑
i=1

FF i V ioc J
i
sc (32)
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3 Methods

In this work we have calculated the efficiencies of single and multiple junction solar cells using simulations in
Mathematica, based on the Shockley-Queisser model presented in 2.3. The influence of four parameters on the
efficiency of a solar cell was studied: The number of junctions, the concentration factor C, the limiting angle
of emitted radiation θlim and the parameter χ. These studies can be separated in the following three parts:

• Calculation of the ideal efficiency limits of solar cells with 1 to 8 junctions by optimization of subcell
bandgap energies.

• Calculation of more realistic efficiencies for single junction and multi-junction cells, based on existing,
abundant materials with non-unity χ.

• A more detailed analysis of two particular solar cell configurations: The single junction c-Si cell and the
5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell.

In this section, we will discuss firstly the optimization procedure used in the first part. Secondly, criteria are
set for the materials that were found in the second part on realistic efficiencies. Finally, we discuss the sources
of uncertainty in the values for efficiency that were obtained.

In all simulations, emissivity tc and absorptivity tc are set to 1. We make use of Eq. 27 or, for multiple
junction cells, Eq. 32 to calculate solar cell efficiencies. For the solar spectrum, the AM1.5 D spectrum is used.

For the design of a multi-junction solar cell, we take the spectrum splitter geometry. There exist currently
two different designs for such a multi-junction solar cell: the tandem cell geometry, where the different subcells
are stacked on top of each other, and the spectrum splitter geometry, where some spectrum splitting device
distributes the light of different wavelengths to the subcells [7,15]. The first design requires the materials to be
epitaxially grown on top of each other. This severely constraints the choice of materials and makes fabrication
expensive. Also, because the subcells are connected in series, one has to match the currents of the subcells,
which limits the efficiency. The spectrum splitter design has the advantage that the subcells are disconnected
and can be operated individually, which means that one has full flexibility in the choice of materials, no current
matching is necessary and fabrication can be less expensive.
Several spectrum splitter designs have been realized and have been demonstrated work in practice [16, 17].
In this work we shall not focus on the design of the spectrum splitter, merely on the efficiencies that can be
obtained using its principles. Therefore it is assumed that the spectrum splitting occurs without losses.

3.1 Optimization Procedure for Ideal Efficiency Limits

In the first part of this work, we optimize bandgap values for solar cells with 1 to 8 junctions to find their
maximum possible efficiencies. We take χ = 1. Optimization occurs as follows.
Bandgap values of each subcell are varied in steps of 0.1 eV and cell efficiency is calculated for every combination
of bandgaps

{
E1
g , E

2
g , ... , E

N
g

}
. This gives us a maximum efficiency and corresponding optimum bandgap values.

This optimum is then further refined by repeating the operation, varying the bandgaps Eig now in steps of 0.02

eV in the domain
[
Eig,opt − 0.05 eV , Eig,opt + 0.05 eV

]
, where Eig,opt is the optimum value for the i-th bandgap

as found by varying the bandgaps in steps of 0.1 eV. This method of optimization is illustrated in Fig. 4 for
the case of the ultimate efficiency of a single junction cell.
In this way, optimum bandgap values and maximum efficiencies are found for:

1. The ultimate efficiency: ηult

2. The efficiency under maximum concentration:5 ηCmax

3. The efficiency for no concentration or angular restriction: ηC=1

5Note that if χ = 1, concentration is completely equivalent to angular restriction, as can be seen from the second term in Eq.
22. An increase of C by a factor 2 yields the same effect on Voc (and therefore on η) as a decrease of εc by a factor 2. Since
Cmax εs = π, applying no concentration and maximum angular restriction (εc = εs) gives the same effect as applying maximum
concentration and no angular restriction.

11



Furthermore, for each of these three cases, optimum bandgap values and maximum efficiencies are also obtained
under the constraint that three of these bandgaps must be those of crystalline silicon (c-Si), amorphous silicon
(a-Si) and germanium (Ge).

0.5 1. 1.5 2. 2.5 3. 3.5 4. 4.5
0

10

20

30

40

50

Eg (eV)

ηu
lt 

(%
)

Optimization for Ideal Efficiencies

First optimization steps (ΔE=0.1 eV)

Search area during second 
optimization (ΔE=0.02 eV)

Maximum from first optimization

Figure 4: Example of the optimization procedure for finding an ideal efficiency limit, here for the case of the ultimate
efficiency of a single junction cell. The first part of the optimization is a crude exploration of the parameter space in
steps of 0.1 eV. The second part consists of a finer exploration (in steps of 0.02 eV) of that region of parameter space
(grey band) that lies around the optimum value found during the crude exploration.

3.2 Material Requirements

In the second part of the work, where we obtain more realistic efficiencies for solar cells, a study was performed
to find existing semiconductor materials having bandgaps close to the optimum values found for no concentra-
tion or angular restriction. The materials that we propose must obey the following criteria:

• They do not contain rare chemical elements.

• The elements that are contained must be obtainable in an economically feasible manner, that is they
must exist in high concentrations in e.g. ore.

• They do not contain highly poisonous elements, such as Cd or Hg.

• The materials should have as high as possible absorption coefficients for photon energies above the
bandgap. This is important firstly for fabrication of thin films and secondly because high absorption
coefficients usually also indicate low radiative lifetimes, resulting in a higher quantum efficiency of radia-
tive recombination.

• They are not known to contain high defect densities, which would result in high non-radiative recombi-
nation rates.

Using the bandgap energies of the materials thus found, we then study efficiencies of single junction and
multi-junction cells depending on the parameters mentioned above: the number of junctions, concentration C,
limiting output angle θlim and χ.

12



3.3 Uncertainty

Two effects cause an uncertainty in the values obtained for efficiencies: the finite resolution during the explo-
ration of the bandgap parameter space and the ideal diode approximation.
The first uncertainty is due to the fact that when one explores parameter space with a certain resolution,
there is always a chance that the maximum that is found is a local maximum and not the absolute maximum.
Although the chance of this happening is small, since generally peaks were flat compared to the resolution of
0.1 eV, we estimated the maximum error to arise from this effect to be +0.8 % efficiency. This is based on
observation of the sharpest peak in efficiency that we found for a 3-junction cell. Note that this is an error only
in the positive direction, i.e. if our maximum efficiency is a local maximum, the absolute maximum efficiency
can only be higher than this value. This uncertainty is only an issue in the first part of the simulations, where
bandgaps were optimized to obtain ideal efficiency limits.
The second cause for uncertainty is the ideal diode approximation. Due to the assumption that was made (Eq.
14), the resulting expression for efficiency in Eq. 27 produces an inexact result for cases where Voc is close to
Eg. This is only the case for high ratios of short-circuit current to dark current, i.e. maximum concentration
or, as long as χ = 1, maximum angular restriction. As shown in appendix B, this error is ∼ 0.05% efficiency for
a single junction cell (Eg = 1.12eV) under maximum concentration. The error for a subcell in a multi-junction
solar cell is expected to be less, as these absorb a smaller part of the solar spectrum and thus have lower
light-generated current. Nevertheless, we take this 0.05 % efficiency as the deviation per subcell, and only for
cells under maximum concentration. In the case of no concentration or the case of maximum angular restriction
and χ 6= 1, this origin of uncertainty is negligible.
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4 Results

In the following section, we present the results of our study. The first part deals with the ideal efficiency limits
that were found for cells with 1 to 8 junctions by optimizing bandgap values. Maximum values were found for
the ultimate efficiency ηult, the efficiency for maximum concentration and the efficiency for no concentration
or angular restriction.
The second part consist of three sections and concerns more realistic calculations of efficiency. First, we present
existing materials that match the ideal bandgap values and that satisfy the requirements that were set in
chapter 3.2. Secondly, we use the bandgap values of these materials to study efficiencies of a single junction
cell, as a function of C and θlim for different χ. Third, we study efficiencies of a multi-junction cell for different
χ, both for maximum concentration and for maximum angular restriction.
In the last part of this chapter we study two particular cases of solar cell configuration more closely. We consider
first the single junction c-Si cell, where we discuss the origin of the losses that occur and the improvements of
its efficiency that are possible by using concentration or angular restriction. The same analysis is then carried
out for a 5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell.

4.1 Ideal Efficiency Limits for 1-8 Junction Solar Cells

In this section, χ is set to unity and bandgaps were optimized to find maximum values for the ultimate efficiency
ηult, the efficiency for maximum concentration and the efficiency for no concentration or angular restriction.
This was done for 1 to 8 junction solar cells, for both the case where all subcell bandgap energies were varied,
as well as the case where three of the bandgaps were set to the bandgaps of germanium (0.67 eV), crystalline
silicon (1.12 eV) and amorphous silicon (1.7 eV). Efficiencies obtained were also compared to literature. The
results are shown in Fig. 5. The optimum bandgap values that were found are listed in appendix C.

1 2 3 4 5 6 7 8
30

40

50

60

70

80

90

100

Junctions

η 
(%

)

ηult      0 fixed
ηult      3 fixed

ηmax. conc.  0 fixed
ηmax. conc.   3 fixed
ηmax. conc.   Literature 

ηno conc.      0 fixed
ηno conc.      3 fixed
ηno conc.         Literature

Figure 5: Maximum efficiencies for solar cells with 1 to 8 junctions, assuming χ = 1. Ultimate efficiency (ηult),
efficiency for maximum concentration (ηmax. conc.) and efficiency for no concentration or angular restriction (ηno conc.)
are shown. Also, results are shown for the case where all bandgaps were varied (full lines) as well as the case where
3 bandgaps were set to the 0.67 eV, 1.12 eV and 1.7 eV (the bandgaps of Ge, c-Si and a-Si, respectively) and the
other bandgaps were varied (dashed lines). The dot dashed lines represent values found in literature [7], where an ideal
blackbody spectrum was used for the solar radiation.

Firstly, it can be seen in Fig. 5 that the efficiency increases continuously with the number of cell junctions,
however the increase in efficiency per junction added becomes low after 4 or 5 junctions (∼ 2% efficiency per
junction). This occurs for ηult as well as the efficiencies for maximum and no concentration. It indicates that
the origin of the increase of efficiency is the reduction of thermalization and non-absorption losses, which are
the only losses present in all three types of efficiency. These losses are strongly reduced by the addition of a
second or a third junction to the cell, which allows for a much larger part of the spectrum to be efficiently
absorbed, whereas reduction of these losses saturates for addition of more than 4 or 5 junctions.
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Secondly, setting 3 bandgap energies to those of Ge, c-Si and a-Si does not seem to have a dramatic effect on
efficiency. Differences are usually of the order of 1 %. This can be interpreted in two ways: either the bandgaps
of c-Si, a-Si and Ge are close to the optimum bandgap values that were found, or alternatively the maximum
efficiency is not a very sharp maximum and there exist many combinations of bandgaps that reach almost
the same efficiency. In any case, this is a positive result, as it allows for the use of these well-characterized
semiconductors in the design of the solar cell.
Thirdly, the difference in efficiency between the blue and the green curves, which can be attributed to the
blackbody radiation from the cells, grows with the number of junctions, from 3.4 % for a single junction cell to
8.4 % for a cell with eight junctions. This behavior can be understood by realizing that each subcell adds its
own blackbody radiation to that of the total cell, since the area of one subcell is constant irregardless of the
number of subcells. This means that for example an 8-junction cell has an area twice as large as a 4 junction
cell, and therefore more blackbody radiative losses. This effect decreases the efficiency slightly for higher num-
ber of junctions, causing the growing difference between the blue and the green graph. Because of this, it is
also expected that after a certain number of junctions (assuming that the area of a subcell remains constant,
as we have done here), the efficiency will decrease, because the reduction of thermalization and non-absorption
losses no longer compensates for the increased blackbody radiation.
Fourthly, it can be observed that the increase in efficiency due to concentration grows with the number of
junctions, from 11.8 % for a single junction cell to 19.2 % for eight junctions. This is due to two effects: firstly
the thermalization losses, which are the main constraint on efficiency for a single junction cell, are decreased
for higher number of junctions, allowing for more improvement of efficiency by concentration. Secondly, con-
centration is most effective for cells with narrow bandgaps, which are present more in cells with high number of
junctions. This is because the difference in Voc between cells with maximum concentration and no concentration
is, according to Eq. 22:

kTc
q

ln (Cmax) = 0.278V

This is a larger relative increase of Voc for cells with lower bandgap, which may have a Voc as low as 0.3 V
(for Eg ≈ 0.5 eV) under unconcentrated illumination. Therefore, for these subcells, concentration can cause
roughly a doubling of output power.
Finally, maximum efficiencies lie above literature values. Differences are ∼ 4% for maximum concentration
and ∼ 2.5% for no concentration. This difference is however expected, since for these literature values an ideal
blackbody spectrum was taken for the solar irradiation, whereas we have used the AM1.5 D spectrum. This
produces higher efficiencies, as one can reduce thermalization losses and non-absorption losses by tuning the
bandgaps such that they match the peaks and dips in the spectrum, absorbing most efficiently in areas of the
spectrum with high intensities. It is shown by Baruch et al. [4] that the difference in maximum efficiencies due
to these different spectra, in the case of a single junction cell with no concentration, is ∼ 3%. This matches
the difference we observe.

4.2 Realistic Efficiencies

In this section we present more realistic calculations of efficiency. First, we present existing materials that
match the ideal bandgap values and that satisfy the requirements that were set in chapter 3.2. Then, in the
second and the third part, we study efficiencies of respectively a single junction cell and multi-junction cells for
different values of χ, C and θlim.

4.2.1 Real Solar Cell Materials

Here, we present existing materials that match the ideal bandgap values found for multi-junction solar cells
with 1 to 8 junctions under no concentration. These values are listed in appendix C. The materials that we
found satisfy the conditions that were listed in chapter 3.2.

A list of semiconductor materials containing only abundant and non-toxic elements with bandgap energies
between 0.5 and 2.5 eV can be found in appendix D, showing the materials, their bandgaps, whether these
bandgaps are direct or indirect, and literature on those materials. The materials that we propose to use for
solar cells with 1 to 8 junctions are listed in Table 1. 6

6Note that the material listed as Cu2ZnSn(SxSe1−x) in this table is referred to in the rest of this work by its abbreviation
CZTS.
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4.2.2 The Single Junction Cell

Here we calculate the efficiencies of a single junction cell as a function of concentration C and limiting output
angle θlim for different values of χ. The bandgap of the cell is that of c-Si (1.12 eV), the material that was
suggested in the previous section for a single junction cell. Results for efficiency as a function of C and θlim
are shown in Fig. 6 and 7 respectively.
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Figure 6: Efficiency of a single junction c-Si cell as a function of concentration (C), where C ranges from 1 to Cmax

(∼ 46000). Plots for different values of χ are shown in colors. The thick black line and the thick, dashed black line
indicate the optimal efficiency of a single junction cell with χ = 1, under maximum concentration (45.1%) and no
concentration or angular restriction (33.3%), respectively. Vertical dashed lines indicate concentration levels of 10, 100,
1000 and 10000 suns.

In Fig. 6 we can observe two trends: Firstly, the overal efficiency of the cell decreases with lower χ. This
is because lowering χ means increasing non-radiative recombination rate and therefore dark current. Secondly,
the effect of increased concentration is the same for any value of χ. That is, efficiency depends logarithmically
on C and although lowering χ may decrease the overall efficiency, it does not influence this dependency on
C. Both these trends can be explained by considering the expression for Voc (Eq. 22). Taking εc = π, this
equation shows that Voc depends on χ and C in a logarithmic manner:

Voc = ...+
kTc
q

(
ln

(
Cεs
π

)
+ ln (χ)

)
(33)

Moreover, the effects of χ and C are independent of each other. This is exactly what we observe in Fig. 6.
It should be noted though, that this independency is due to our choice of definition of χ, and that in reality
the ratio of radiative recombination and total recombination is not likely to be independent of concentration.
By choosing χ to be independent of the voltage, we have assumed that the non-radiative recombination rate

depends on voltage through the same factor e
qV
kT as the radiative recombination rate. However, in reality Auger

recombination depend much more strongly on voltage (through a factor e
3qV
kT ) due to the strong dependency

on carrier density [5, 10], and defect recombination usually depends less strongly on voltage (through a factor

e
qV
2kT for recombination in inter-band defect states [5]). χ therefore depends on cell voltage and since the cells

operating voltage grows with the concentration factor C, χ also depends on C. Depending on whether Auger
or defect recombination is the dominant source of non-radiative recombination, χ decreases or grows with C
and the graphs in Fig. 6 for more realistic calculations should become less or more steep, respectively.

The decoupling of the effects of concentration and χ on efficiency observed in Fig. 6 is not found in the case
of angular restriction though. As one can observe in Fig. 7, the effect of reducing θlim on the cell efficiency
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Figure 7: Efficiency of a single junction c-Si cell as a function of limiting output angle (θlim). Note that the figure is
mirrored with respect to Fig. 6, i.e. decreasing θlim produces a similar effect on efficiency as increasing C. Plots for
different values of χ are shown. The thick black line and the thick, dashed black line indicate the optimal efficiency of
a single junction cell with χ = 1, under maximum concentration (45.1%) and no concentration or angular restriction
(33.3%), respectively. Vertical dashed lines indicate values for θlim that would produce the same effect on efficiency as
concentration levels of 10, 100, 1000 and 10000 suns in a cell with unity χ. For cells with non-unity χ, this equivalence
no longer holds.

depends very strongly on χ. For χ = 1 angular restriction produces the same effect on efficiency as concen-
tration, yielding a maximum improvement of efficiency of 11.8 %. However, for χ = 0.9 the maximum gain in
efficiency that is possible with angular restriction is already reduced to ∼ 2%. This is because lowering θlim de-
creases the radiative recombination rate, but does not influence the non-radiative recombination rate. Further
reduction of θlim beyond the point where non-radiative recombination rate has become the dominant source
of recombination therefore does not increase efficiency further. This explains why the curves with 0.6 ≤ χ ≤ 1
in Fig. 7 initially show an increase of efficiency as θlim is reduced below 90◦ and radiative recombination rate
is still the dominant recombination source, but stabilize at a certain point when non-radiative recombination
rate has become dominant.

These results imply that, whereas concentration remains a useful method of increasing solar cell efficiencies,
irregardless of the level of non-radiative recombination, angular restriction is useful only for materials with
very low non-radiative recombination rates (χ ≥ 0.9). The effect of concentration is however not expected to
be independent of the dominant type of non-radiative recombination.

4.2.3 The Multiple Junction Cell

In this section, we generalize the studies from the previous section on single junction cells to the case of
multi-junction cells. We study efficiencies of cells with 1 to 8 junctions for different χ, both for maximum
concentration and for maximum angular restriction. Results for the former and for the latter case are shown
in Fig. 8 and 9 respectively.

From Fig. 8, the following conclusions can be drawn: firstly, the use of real, existing materials does not lower
efficiency much compared to use of the ideal bandgap values, as can be seen by the difference between the black
and the blue curve. The largest difference between these two is ∼ 3 % for a 3-junction cell. Secondly, it can be
seen that, just as for the single junction cell, the efficiency for cells with any number of junctions under maxi-
mum concentration is lowered as χ decreases. This can be understood because the relation between the open
circuit voltages of the subcells and χ is given by the same logarithmic term as for a single-junction cell (Eq. 33).
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Figure 8: Efficiencies for solar cells with 1 to 8 junctions under maximum concentration, for several values of χ. The
thick black line and the thick, dashed black line indicate the optimal efficiencies of the cells with χ = 1, respectively
under maximum concentration and no concentration or angular restriction. These correspond to the green and the
orange full lines in Fig. 5.
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Figure 9: Efficiencies for solar cells with 1 to 8 junctions under maximum angular restriction, for several values of χ.
The thick black line and the thick, dashed black line indicate the optimal efficiencies of the cells with χ = 1, respectively
under maximum concentration and no concentration or angular restriction. These correspond to the green and the
orange full lines in Fig. 5.

In Fig. 9 we recognize the same strong dependency on χ of the effect of angular restriction on efficiency as
we observed for the single junction cell. Efficiencies decrease drastically with χ, because non-radiative recom-
bination has become the dominant source of recombination for non-unity χ and maximum angular restriction.
Already for χ = 0.6, we see that efficiencies are comparable to those for no concentration or angular restriction
and χ = 1 (the black, dashed line). The decrease of efficiency between the curves with χ = 1 and χ = 0.999
is slightly larger for higher number of junctions (due to the narrow bandgap subcells in these many-junction
cells, as was mentioned in section 4.1), but in all other cases the decrease is the same for all number of junctions.
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From these figures, it is clear that the effect we have seen in the previous section for single junction cells,
holds for multi-junction cells as well. That is, whereas concentration remains useful as a means to increase
efficiency regardless of what value χ has, angular restriction only produces a significant increase of efficiency
for near-unity χ.

4.3 The single junction c-Si cell and the 5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP
cell

In this section, we highlight the origin of losses and the potential for improvement of efficiencies in two specific
cases: a single junction c-Si cell and a 5 junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell. This is because a single
junction cell remains interesting for practical use, because of its simplicity relative to a multi-junction cell.
Amongst the multi-junction cells, a 5-junction cell can be argued to have the maximum amount of subcells,
after which addition of extra subcells would result in such a minor increases of efficiency that it would not be
worth the effort. One could however also reasonably place this maximum at the 3 or 4-junction cell.

We shall take χ to be 0.1 in these cells, i.e. 90% of their recombination is non-radiative, which is an
optimistic value for c-Si [15]. For most materials, χ will most likely be lower.
Losses in the cell are divided into:

• Thermalization and non-absorption losses. These losses are accounted for in the ultimate efficiency ηult.

• Fundamental losses due to blackbody radiation. These losses lower efficiency from ηult to the efficiency
under maximum concentration and χ = 1.

• Non-radiative recombination losses. These losses occur upon lowering χ from 1 to 0.1.

• Losses due to lack of concentration. These losses account for the difference between the efficiency of a
cell with concentration Cmax and a cell with C = 1.

Fig. 10 shows these losses and the resulting efficiency limits for both cells under consideration.

Considering Fig. 10, we can now compare the different loss terms between the single junction and the
multi-junction cell.
The first loss term, thermalization and non-absorption, which is by far the largest loss term for a single junc-
tion cell, has been significantly reduced in the 5-junction cell. This is because the spectrum can be far more
effectively absorbed by a multi-junction cell and thermalization losses are reduced because each subcell absorbs
a smaller part of the spectrum, containing no photons that have energies far exceeding their bandgaps.
The second loss term, fundamental blackbody radiation losses, is larger in the multi-junction cell. This is due
to the increased blackbody radiation upon addition of a subcell, as was explained in section 4.1.
The third term, non-radiative recombination losses, is also slightly higher for the 5-junction cell. This is be-
cause decreasing χ from 1 to 0.1 while keeping θlim constant at π causes a fixed decrease of Voc given by
kTc

q ln
(

1
0.1

)
= 0.06V (see Eq. 22). As was the case for concentration, this leads to a higher relative decrease of

Voc in subcells with narrow bandgaps, which are found more in cells with high number of junctions. Therefore
these cells are more sensitive to a decrease in χ.
As for the fourth loss term, losses due to lack of concentration, we see that these losses are again higher for the
5-junction solar cell. As explained in section 4.1, this is due to the presence of narrow-bandgap subcells in the
multi-junction cell, which have higher relative gain of Voc due to concentration.

It is clear that for both cells, concentration of solar light has the potential to make a large difference in solar
cell efficiency: 11.6% and 16.7 % gain in efficiency under maximum concentration for the single junction and
the 5-junction cell, respectively. Even though maximum concentration is impossible in practice, a concentration
factor of e.g. 1000 would still give an increase in efficiency of 7.6 % for the single junction cell and 10.7% for
the 5-junction cell.
The potential for efficiency gain due to angular restriction however, was not shown in Fig. 10, as it would have
been to small to observe for χ = 0.1. On the other hand, the difference between concentration and angular
restriction for solar cell efficiency can clearly be seen in Fig. 11, where the energy produced by the 5-junction
solar cell per nm wavelength is shown. Per subcell, the number of irradiated photons at each wavelength is
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Figure 10: The losses and efficiency gain potential in a single junction c-Si cell and a 5-junction Ge-(c-Si)-CZTS-
(a-SiC)-GaP cell. Both cells are assumed to have χ = 0.1. The efficiency gain that is obtainable with angular restriction
(∼ 0.1%)is not shown.

multiplied by the subcells fill factor FF and q times open circuit voltage Voc to obtain the produced power per
wavelength. The area under each of these curves, divided over that under the solar spectrum, represents the
efficiency of the solar cell with that particular configuration.

The blue curve represents energy production in a cell with ultimate efficiency. It overlaps with the solar
spectrum at wavelengths corresponding to subcell bandgap energies, since these photons create carriers that
do not thermalize. Furthermore, photons with energies below the bandgap of Ge are not absorbed. This would
require a subcell with very low bandgap, which has near-zero Voc for unconcentrated sunlight. These bandgap
values are based on optimum values for unconcentrated sunlight (see appendix C.3).
The curves labeled ”Cmax, χ = 1” and ”C = 1, no ang. restriction,χ = 1” represent the energy production in
a cell with no non-radiative recombination and with respectively maximum concentration and no concentration
or angular restriction. The curves labeled ”Cmax, χ = 0.1” and ”C = 1, max ang. restriction,χ = 0.1”
represent the energy production in a cell with 90% non-radiative recombination and with respectively maximum
concentration and maximum angular restriction. Comparing these last two curves, it can be clearly seen that
angular restriction produces much lower efficiency then concentration.
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Figure 11: The energy produced per wavelength by the 5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP solar cell under
different circumstances (colored curves), compared with the AM1.5 D solar spectrum (black curve). Efficiency of the
cell in one of these circumstances is the area under the corresponding graph, divided by the area under the AM1.5 D
solar spectrum. Vertical dashed lines indicate the wavelengths corresponding to the bandgaps of the subcell materials.
For χ = 0.1, angular restriction is less effective than concentration in increasing efficiency.

5 Discussion

These simulations give deep insight in the loss mechanisms and potential efficiencies of a solar cell through the
systematical variation of the number of junctions, concentration, angular restriction and non-radiative recom-
bination rate.
Optimum efficiency values that were found for cells with 1 to 8 junctions vary slightly from literature values,
which can however be contributed to use of a different solar spectrum. The dependency of efficiency on angular
restriction for a single junction solar cell that was observed in section 4.2.2 resembles the results found by
Kosten et al. [10] for a single junction GaAs cell with several values for internal fluorescent yield (a quantity
comparable to the parameter χ). Our suggestion that angular restriction is only useful in cells with less than
10% non-radiative recombination (i.e. χ ≥ 0.9), is affirmed by the work of Mart́ı et al. [11].

To further improve the simulations, the following suggestions could be considered.
Firstly, simulations should be expanded so as to account for imperfect light trapping. In this work, perfect
light absorption was assumed. Taking into account realistic light trapping scenarios with absorption depending
on absorption coefficient, cell thickness and surface texturing (as Kosten et al. have done for GaAs cells [10])
would lead to more accurate efficiencies.
Secondly, in stead of the macroscopic parameter χ, a more detailed description of non-radiative recombination
losses can be incorporated in the simulations. Empirical descriptions based on material parameters exist for
the recombination rates due to Auger recombination [10] as well as surface defect and bulk defect recombi-
nation [5]. This adjustment would require knowledge of material parameters such as absorption coefficient
and carrier densities, lifetimes and mobilities. It would complicate simulations, especially because it would no
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longer be possible to use the Shockley-Queisser model due to the different dependencies of the recombination
rates on cell voltage. The exact model could be used instead, and one could study e.g. the performance of the
suggested solar cell material combinations (Section 4.2.1).
Thirdly, non-unity transmittance of solar illumination can be taken into account by incorporating into the
model for example single-layer or multi-layer antireflection coatings that are optimized for the spectral range
of a specific subcell.

A good step towards reaching a highly efficient, low-cost solar cell would be to focus on the two designs
proposed in section 4.3.
The single junction c-Si cell remains the best characterized and most developed solar cell today, and it is worth
looking into improving its efficiency in such a way that it can be easily incorporated in the existing production
process. Its efficiency could be improved by 7.6 % employing 1000-fold concentration of the light.
For higher efficiencies, one could focus on the 5 junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell suggested here.
Using a spectrum splitter and a concentrator, this cell, consisting of only abundant materials for which χ is
assumed to be 0.1, could reach efficiencies of 64.5% for 1000-fold concentration.

6 Conclusion

We have used the detailed balance model to calculate theoretical efficiencies of solar cells. The number of
subcells, solar concentration, limiting output angle and non-radiative recombination rate were varied and their
influence on efficiency was studied. Existing and abundant materials were proposed for use in multi-junction
solar cells.
From ideal efficiency calculations, it is found that for cells with more than 5 junctions, efficiency increase per
junction added is max. ∼ 2%, making it superfluous to use more than 5 subcells in a multi-junction cell. Next,
more realistic efficiency calculations were performed including non-radiative losses, where it was observed that
concentration is a useful means to increase efficiency of the solar cell for any non-radiative recombination rate.
The effect of restricting the angle of emitted light, on the other hand, becomes almost negligible (≤ 2% increase
in efficiency) as χ drops below 0.9, that is for more than 10 % of the recombination being non-radiative. Finally,
an analysis of the single junction c-Si cell and the 5-junction Ge-(c-Si)-CZTS-(a-SiC)-GaP cell reveals that,
assuming χ = 0.1, the former has a potential efficiency of 30.7 % for unconcentrated light and 38.3 % for a
concentration of 1000 suns, and the latter has potentially 53.8 % efficiency for unconcentrated light and 64.5
% for a concentration of 1000 suns.
This study has provided detailed insight into the relative contributions of loss processes in solar cells, which
were summarized by comparing the losses in a single junction and a 5-junction cell, as well as made suggestions
for the fabrication of very high efficiency solar cells. These results may serve as guidelines in the continued
search for a highly efficient solar energy system fit for large-scale applications.
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Appendices

A Étendue

Consider the situation in Fig. 12a, where an infinitesimal surface element dS is embedded in a medium with
refractive index n. The surface emits light confined to a certain solid angle element dΩ at an angle θ with its
normal vector nS . The area of dS that is projected in the propagation direction of the light is dScos(θ). The
element of étendue of this light is then defined as [3] [18]:

dε = n2cos(θ)dΩdS (34)

Note that since solid angle and n are dimensionless quantities, the dimension of étendue is area.

mirror

p

n

nsa) b)

Figure 12: a) An infinitesimal surface area dS emitting light into an element of solid angle dΩ [18]. b) A planar solar
cell with a mirror at the back with its outgoing cone of radiation extending to an angle θlim.

Fig. 12b depicts the case of a planar solar cell with a back reflector that is emitting radiation confined to
a cone centered on the normal vector to the cells surface and extending to an angle θlim. The étendue of this
radiation is given as:

ε = n2
∫ ∫

cos(θ) dΩdS = 2π n2A

∫ θlim

0

cos(θ) dθ = π n2Asin2(θlim) (35)

A denotes the area of the solar cell. In this work, we are interested in the étendue per unit area of a solar
cell that emits light constrained by various angles θlim into air (n=1). This étendue is hence given as:

ε = π sin2(θlim) (36)

Note that for incoming radiation, étendue is defined in the same way, with dΩ now the solid angle subtended
by the source of radiation, from the perspective of the receiver.
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B Validity of the Ideal Diode Equation

As has been discussed in section 2.3, the ideal diode equation (Eq. 17) is an approximation of the exact
current-voltage characteristic, valid for Eg − qVoc � kTc. However in some cases considered in this work, i.e.
for C = Cmax or for maximum angular restriction and χ = 1, this condition is no longer fulfilled. Eq. 21
then no longer describes open circuit voltage correctly and may even give Voc higher than

Eg

q . However, this
leads only to a minor inaccuracy in the efficiency that is obtained, because the maximum power point hardly
differs from the exact result. This is demonstrated in Fig. 13, taken from the work of Baruch et al. [4]. The
authors show exact and approximate current-voltage and efficiency-voltage relations for a single junction cell
with a bandgap of 1.1 eV, under maximum concentration and with only radiative losses. A perfect blackbody
spectrum at a temperature of 5800 K was used for the solar irradiation. qVoc exceeds Eg for the approximate
solution, which yields a maximum efficiency for the exact and for the approximate case of 40.668% and 40.611%
respectively, showing a difference of ∼0.05% efficiency.

Figure 13: Current (A) and efficiency (B) plotted as a function of cell voltage, for a single junction cell with a
bandgap of 1.1 eV, under maximum concentration and with only radiative losses. Curve a was calculated using the
exact detailed balance model, curve b using the ideal diode equation (Eq. 17). This figure was taken from the work of
Baruch et al. [4]
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C Optimum Efficiencies and Bandgap Energies

C.1 Ultimate Efficiency

Junctions Fixed G1 G2 G3 G4 G5 G6 G7 G8 ηult (%)

1 0 1.12 - - - - - - - 49.0
2 0 0.70 1.46 - - - - - - 66.0
3 0 0.53 1.13 1.81 - - - - - 74.4
3 3 0.67 1.12 1.70 - - - - - 73.7
4 0 0.51 0.93 1.39 1.99 - - - - 80.2
4 3 0.67 1.12 1.70 2.24 - - - - 78.9
5 0 0.51 0.93 1.33 1.73 2.27 - - - 83.7
5 3 0.50 0.67 1.12 1.70 2.24 - - - 82.0
6 0 0.51 0.93 1.17 1.47 1.83 2.33 - - 85.8
6 3 0.50 0.67 1.12 1.37 1.70 2.23 - - 84.9
7 0 0.12 0.93 1.15 1.41 1.73 2.07 2.53 - 87.5
7 3 0.49 0.67 0.93 1.12 1.39 1.70 2.23 - 87.1
8 0 0.49 0.69 0.93 1.15 1.41 1.73 2.07 2.53 89.3
8 3 0.49 0.67 0.93 1.12 1.39 1.70 2.03 2.49 89.1

Table 2: Optimum bandgap energies (in eV) and corresponding ultimate efficiency for solar cells with 1 to 8 junctions.
The column ’Fixed’ indicates the number of bandgaps that were fixed during the optimization of bandgaps, as is
mentioned in chapter 4.1. If three bandgaps were fixed, these were fixed to the bandgap energies of Ge, c-Si and a-Si.

C.2 Efficiencies for Maximum Concentration

Junctions Fixed G1 G2 G3 G4 G5 G6 G7 G8 η (%)

1 0 1.12 - - - - - - - 45.1
2 0 0.70 1.52 - - - - - - 60.4
3 0 0.52 1.12 1.82 - - - - - 67.8
3 3 0.67 1.12 1.70 - - - - - 67.2
4 0 0.51 0.93 1.39 2.01 - - - - 72.7
4 3 0.67 1.12 1.70 2.26 - - - - 71.5
5 0 0.51 0.93 1.35 1.75 2.29 - - - 75.7
5 3 0.50 0.67 1.12 1.70 2.26 - - - 74.2
6 0 0.51 0.93 1.19 1.53 1.91 2.41 - - 77.4
6 3 0.49 0.67 1.12 1.39 1.70 2.25 - - 76.5
7 0 0.51 0.93 1.15 1.41 1.73 2.09 2.55 - 79.3
7 3 0.51 0.67 1.12 1.39 1.70 2.03 2.49 - 78.6
8 0 0.51 0.71 0.93 1.15 1.41 1.73 2.09 2.55 81.0
8 3 0.51 0.67 0.93 1.12 1.39 1.70 2.03 2.49 80.7

Table 3: Optimum bandgap energies (in eV) and corresponding efficiency for solar cells with 1 to 8 junctions under
maximum concentration and taking χ to be 1. The column ’Fixed’ indicates the number of bandgaps that were fixed
during the optimization of bandgaps, as is mentioned in chapter 4.1. If three bandgaps were fixed, these were fixed to
the bandgap energies of Ge, c-Si and a-Si.
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C.3 Efficiencies for No Concentration or Angular Restriction

Junctions Fixed G1 G2 G3 G4 G5 G6 G7 G8 η (%)

1 0 1.14 - - - - - - - 33.3
2 0 0.94 1.64 - - - - - - 45.6
3 0 0.92 1.40 2.02 - - - - - 51.3
3 3 0.67 1.12 1.70 - - - - - 50.5
4 0 0.69 1.13 1.57 2.15 - - - - 55.3
4 3 0.67 1.12 1.70 2.26 - - - - 54.8
5 0 0.69 1.11 1.41 1.81 2.33 - - - 57.7
5 3 0.67 1.12 1.39 1.70 2.25 - - - 57.2
6 0 0.53 0.93 1.19 1.53 1.91 2.41 - - 59.2
6 3 0.67 0.93 1.12 1.39 1.70 2.25 - - 58.8
7 0 0.53 0.93 1.15 1.41 1.73 2.09 2.55 - 60.6
7 3 0.67 0.93 1.12 1.39 1.70 2.05 2.51 - 60.5
8 0 0.51 0.71 0.93 1.15 1.41 1.73 2.09 2.55 61.8
8 3 0.51 0.67 0.93 1.12 1.39 1.70 2.05 2.51 61.5

Table 4: Optimum bandgap energies (in eV) and corresponding efficiency for solar cells with 1 to 8 junctions with no
concentration or angular restriction and taking χ to be 1. The column ’Fixed’ indicates the number of bandgaps that
were fixed during the optimization of bandgaps, as is mentioned in chapter 4.1. If three bandgaps were fixed, these were
fixed to the bandgap energies of Ge, c-Si and a-Si.
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D Semiconductor materials with abundant, non-toxic elements

Material Eg (eV) Direct (D) or
Indirect (I) bandgap

Literature

PbS 0.5 D [19,20]
CuFeS2 0.53 D [19,21]
Ge 0.66 I [5, 19,22,23]
SiGe 0.67-1.12 I [24]
Mg2Ge 0.74 D [19]
Mg2Si 0.77 I [19,25]
β-FeSi2 0.84-0.88 D [26–28]
CuGe2P3 0.9 [19]
Cu2SnS3 0.91 [19,29]
FeS2 0.95 I [30]
PbSnS3 1.05 [29]
Cu2ZnSn(SxSe1−x)

(CZTS)
1.05-1.65 D [31,32]

c-Si 1.12 I [19]
Cu2S 1.2 D [33,34]
CuO 1.2 D [26,35]
CuN3 1.2-1.9 [36]
CuN3 1.2-1.9 [5]
a-SiGe:H 1.4-1.7 D [37–39]
Zn3P2 1.4-2.2 D [36]
ZnSnP2 1.45 [19]
B 1.55 [19]
CuGaSe2 1.68 D [5]
a-Si:H 1.6-1.9 D [5,33,40]
a-SiC 1.7-2.2 D [5]
ZnP2 1.7-2.2 D [36]
AlB12 1.9 [36]
Ca2Si 1.9 [36]
SiP2 1.9 [36]
Cu2O 1.9-2.0 D [35,36]
ZnSnP2 2.1 [19]
ZnGeP2 2.2 [19]
GaP 2.24 I [19,41,42]
3C-SiC (7) 2.38 I [19,43–45]
ZnSiP2 2.3 [19]
CuGaS2 2.38 [19]
AlP 2.45 I [19]
CuAlS2 2.5 I [19,46]

Table 5: Semiconductor materials with bandgaps between 0.5 and 2.5 eV, the relevant range for solar cell applications.
These materials contain only abundant and non-toxic elements, which can be obtained in an economically feasible
manner. A distinction is made between direct and indirect bandgap materials, insofar as information on this was
present in the studied literature. Literature on each material is presented.

7SiC comes in many different crystal structures. 3C-SiC, also known as β-SiC or cubic SiC, has the best conductive properties
and lowest bandgap. A disadvantage of 3C-SiC is that it is difficult to grow large wafers, although currently much work is being
done on this subject. [43]
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