Materials Science
Aspects of
Photonic Crystals
Albert Polman and Pierre Wiltzius,
Guest Editors

The electronics revolution of the past 50 years has its roots in two scientific and technological areas. On the one hand, there have been tremendous advancements in our understanding of the physics of metals, dielectrics, and semiconductors, leading to the development of devices such as the transistor. On the other hand, a variety of processing techniques such as thin-film growth and deposition, ion implantation, and photolithography have allowed the massive integration of electronic functionality within a very small area, leading to microprocessors and high-density memory, among other innovations.

Our ability to control photons is in many ways in its infancy, compared with how we can manipulate electrons. Passive devices such as optical fibers, waveguides, splitters, and multiplexers are well developed. But as soon as more complex functionality or integration is required, the optical solutions do not yet exist. For example, all-optical switches are still very rudimentary and bulky, and the size of an optical integrated circuit (IC) is most often in the millimeter or centimeter range rather than the submicrometer dimensions common in electronic technology.

Nevertheless, there is a clear need to develop new materials and concepts with increased optical functionality for a variety of applications. The global telecommunications market is on an extraordinarily steep growth curve, driven largely by the explosion of the Internet, which plays an increasingly pervasive role in our daily life. The demand for broadband communications networks is expected to grow for many years to come. New approaches for the manipulation of photons will have to be developed to realize the more advanced optical elements needed for networks in the coming decade. Photonic crystals may play an important role in this development.

A photonic crystal is a regularly structured material that exhibits strong interaction with light. The conceptually simplest example of such a material is a multilayer stack of alternating high- and low-dielectric-constant materials. Strong interaction with light occurs in such a material because of interference between the light beams that are reflected and refracted at all interfaces inside the material. The final optical response is determined by the coherent superposition of all of these optical waves. It has long been known that such multilayer stacks can be engineered to have, for example, nearly perfect reflection over a (narrow or broad) wavelength range, a so-called stop band. Thin-film deposition techniques have made such structures widely available. Well-known examples of such “one-dimensional” (1D) photonic crystals are dielectric mirrors, filters, fiber gratings, distributed-feedback structures, and vertical-cavity surface-emitting lasers. Research is also being focused on “omnidirectional” mirrors that reflect light over a well-defined wavelength range in all directions, again using an alternating array of thin films with appropriately chosen optical properties.

Figure 1 shows an example of a 1D photonic crystal integrated in an optical channel waveguide. In this structure, fully based on silicon, an array of holes was etched by using standard lithographic techniques. The size and spacing between the holes defines the wavelength-dependence of optical transmission through the waveguide. The importance of this structure lies in its extremely small size and mode volume, and the possibility of its integration on a planar (silicon) substrate.

While many of the 1D structures mentioned have a wealth of applications, the fundamental optical concept behind their operation is relatively simple. In recent years, there has been much activity aimed at expanding the simple concepts of layered, 1D photonic structures to higher dimensions. As first proposed by Yablonovitch and John, the optical properties of such materials can be described by an “optical band structure.” This concept has analogies to the well-known band structure of electronic materials in the sense that in materials with particular structures, it predicts the existence of an optical bandgap, that is, a range of optical frequencies that cannot propagate in the material. This concept is particularly intriguing in a 3D photonic crystal, as it implies that in a particular frequency band, spontaneous emission would be completely suppressed. Initial searches for a structure that would possess a full bandgap led to fcc crystalline structures, but they failed to yield positive results. Soukoulis et al. made the important discovery that diamond symmetry eliminated a degeneracy in the band diagram, thus opening up a bandgap in all crystal directions. In the past few years, great progress has been made to realize such structures experimentally.

While 2D crystals seem less appealing because of their lack of optical control over the third dimension, they have the advantage of possible integration with planar optical-waveguide technology. In addition, external probes can be used to determine properties inside the crystal. The group led by Joannopoulos has proposed a large variety of 2D structures, many of which are now being studied experimentally. As an example, Figure 2 shows a simulation of the propagation of an optical mode traveling around a sharply bent waveguide in a 2D photonic crystal composed of a cubic array of dielectric...
cylinders. Note that this particular property of the photonic crystals is due to a carefully chosen defect, that is, a missing row and column of cylinders. Indeed, defects and disorder play an extremely important role in photonic-crystal research, as they enable the tailoring of particular properties for specific wavelengths.

The first experimental realizations of 3D photonic crystals were for wavelengths in the microwave region. Yablonovitch and collaborators7 invented an ingenious scheme of holes made in a dielectric using mechanical drilling (see Figure 3). This structure is probably the first 3D structure with a full bandgap in the microwave regime. Obviously, many applications of photonic crystals are in the visible wavelength range or the near-infrared telecom
communications3 window (1.3–1.5 μm), and submicrometer resolution in the fabrication technology is therefore required. This can be done by taking advantage of the latest techniques in submicrometer patterning, initially developed for the IC industry. As an example, Figure 4 shows a 2D photonic crystal composed of Si pillars with diameters as small as 205 nm made using high-resolution lithography.8 Alternative methods such as the self-assembly of colloids have led to important new photonic-crystal fabrication technology as well. A promising example is shown in Figure 5. A completely different approach to building 3D structures with micrometer-scale features was demonstrated by Marder and collaborators.10 Using two-photon polymerization of photoresists and advanced scanning tools, they built structures such as those in Figure 6.

Semiconductors such as Si and GaAs possess the high dielectric contrast and low absorption required for a full photonic bandgap in two or three dimensions. At the same time, photonic crystals made of dielectric materials with a lower refractive index, such as SiO\textsubscript{2}, TiO\textsubscript{2}, and polymers, while not having a full bandgap, can still have strong interaction with light and, therefore, interesting photonic properties. More recently, theory on photonic crystals partly composed of metals indicates a wealth of interesting phenomena in such materials, and the first experiments in this area are just appearing.

This issue of MRS Bulletin gives a snapshot of current developments and future trends in 2D and 3D photonic-crystal research and technology.

Optical fiber is the backbone of all-optical networks. Knight et al. review new concepts in microstructured optical fibers that have 2D patterns formed by drawing structured fiber preforms. In these fibers, light propagates in a core mostly composed of air, and several nonlinear properties are described.

The contribution by Noda covers the development of 2D and 3D photonic crystals at optical wavelengths made with III–V semiconducting materials. He discusses applications to ultrasmall optical ICs, including sharp bends in waveguides, lasers, and filters. He also presents a 3D photonic crystal with a full photonic bandgap in the near-infrared. The structures are made using state-of-the-art, high-
Materials Science Aspects of Photonic Crystals

Wehrspohn and Schilling describe electrochemical routes to building arrays of pores in silicon and aluminum oxide. These structures show photonic bandgaps in two dimensions. Optical characterization of these structures, including waveguides, is presented.

The article by Lin et al. reviews several examples of 3D photonic crystals with different symmetries that have been built using silicon VLSI (very large-scale integration) tools. A 3D photonic crystal with a full photonic bandgap in the near-infrared is discussed. They also show some of the basic building blocks for photonic structures such as waveguides and microcavities.

A radically different materials approach to building 3D microporous objects using colloidal self-assembly. These photonic crystals can be replicated using a variety of techniques, and optical and structural characterization are discussed.

The last article in this issue, by Vos and Polman, discusses recent advances in the control of the spontaneous emission of light in photonic crystals. The concept of local optical density of states is described, as well as experiments on the incorporation of optical probes inside photonic crystals.

We hope that this issue of MRS Bulletin will stimulate the materials research community and enable further progress toward achieving photonic crystals with desired properties, including full control of spontaneous emission, and applications in devices such as low-threshold lasers, low-loss waveguides, multiplexers, optical switching elements, and photonic integrated circuits with enhanced functionality.

References

For up-to-date information on MRS Meetings, access www.mrs.org
Materials Science Aspects of Photonic Crystals

Albert Polman, Guest Editor for this issue of *MRS Bulletin*, is a scientific group leader and head of the optoelectronic materials program at the FOM Institute for Atomic and Molecular Physics (AMOLF) in Amsterdam. His research interests include photonic-bandgap materials, rare-earth-doped photonic materials, colloidal photonic materials, semiconductor nanocrystals, and rare-earth-doped semiconductors, as well as the fundamentals of ion–solid interactions. In 1985, Polman received his master’s degree in physics, and in 1989 he earned his PhD degree in materials science and engineering—both from the University of Utrecht. From 1989 to 1991, he was a postdoctoral researcher at AT&T Bell Laboratories. In 1991, he returned to AMOLF to start a new optoelectronic materials program. In 1996, he was appointed adjunct professor of materials science at Utrecht University.

Polman has co-authored some 150 papers on optoelectronic materials, participated in four conference proceedings, and is co-inventor on three patents. He has served MRS as a symposium organizer and a Volume Organizer of *MRS Bulletin* and will co-chair the 2003 MRS Spring Meeting.

Pierre Wiltzius, Guest Editor for this issue of *MRS Bulletin*, is a director of semiconductor physics research at Bell Laboratories/Lucent Technologies. His research interests include soft condensed matter and complex fluids (e.g., polymers, colloids, liquid crystals, and their potential for photonic crystals). Wiltzius is also involved in plastic transistors on flexible substrates for various applications, including electronic paper. Some of the highlights in semiconductor physics research include wide-bandgap semiconductors, quantum cascade lasers, and molecular-scale electronics. He received the Diplom-physiker degree (1976) and the DSc.N. degree (1981) from the Swiss Federal Institute of Technology in Zurich. He was a postdoctoral fellow at the University of California—Santa Barbara between 1982 and 1984. Wiltzius then joined Lucent (formerly AT&T Bell Laboratories) in 1984 as a member of the technical staff. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science and is currently a senior member of the IEEE.

Wiltzius can be reached by e-mail at wiltzius@lucent.com.

Tim A. Birks is currently a staff member at the Communication Optics Research Lab of Agilent Technologies Inc. His research interests focus on the design, fabrication, and characterization of nanophotonic devices.

Birks can be reached by e-mail at t.a.birks@bath.ac.uk.

Edmond Chow received a BS degree in computer engineering from the Johns Hopkins University in 1982, and his MS and PhD degrees in computer engineering from Stanford University in 1984. Wiltzius then joined Lucent (formerly AT&T Bell Laboratories) in 1984 as a member of the technical staff. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science and is currently a senior member of the IEEE.

He was a postdoctoral fellow at the University of California—Santa Barbara between 1982 and 1984. Wiltzius then joined Lucent (formerly AT&T Bell Laboratories) in 1984 as a member of the technical staff. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science and is currently a senior member of the IEEE.

Wiltzius can be reached by e-mail at wiltzius@lucent.com.

Tim A. Birks is a Senior Lecturer in the Department of Physics at the University of Bath, having previously worked in the Optoelectronics Research Center at the University of Southampton. Since 1994, Birks has pursued the development of photonic-crystal fiber and the understanding of its unusual optical properties. He has carried out experimental and theoretical research on single-mode fiber devices since 1986. Birks was awarded a BA degree in physics (1986) from Brasenose College, Oxford, and his PhD degree in electronics and computer engineering (1990) from the University of Limerick, Ireland. His work was recognized in 1995 by a Royal Society University Research Fellowship award.

Birks can be reached by e-mail at t.a.birks@bath.ac.uk.

Edmond Chow is an associate professor of chemistry at Rice University. His research interests include template chemistry, photonic crystals, and the properties of liquids and glasses in nanoscale environments. She received her BS degree in chemistry and physics from Stanford University in 1998 and her PhD degree in chemistry from the University of California—Berkeley in 1994. Colvin became a member of the technical staff at Bell Laboratories in 1995 after postdoctoral training there and joined the faculty of Rice University in 1996. She was recently named an Alfred P. Sloan Fellow (2000) and a Camille Dreyfus Teacher-Scholar (2001).

Colvin can be reached at Rice University, Department of Chemistry, MS 60, Houston, TX 77005, USA; and by e-mail at colvin@ruf.rice.edu.

Vicki L. Colvin is a Senior Transistor group at the Swedish Nanofabrication Laboratory. In 1991, he was appointed adjunct professor of materials science at Utrecht University.

Polman has co-authored some 150 papers on optoelectronic materials, participated in four conference proceedings, and is co-inventor on three patents. He has served MRS as a symposium organizer and a Volume Organizer of *MRS Bulletin* and will co-chair the 2003 MRS Spring Meeting.

Polman can be reached by e-mail at polman@amolf.nl and via URL www.amolf.nl.

Pierre Wiltzius, Guest Editor for this issue of *MRS Bulletin*, is a director of semiconductor physics research at Bell Laboratories/Lucent Technologies. His research interests include soft condensed matter and complex fluids (e.g., polymers, colloids, liquid crystals, and their potential for photonic crystals). Wiltzius is also involved in plastic transistors on flexible substrates for various applications, including electronic paper. Some of the highlights in semiconductor physics research include wide-bandgap semiconductors, quantum cascade lasers, and molecular-scale electronics. He received the Diplom-physiker degree (1976) and the DSc.N. degree (1981) from the Swiss Federal Institute of Technology in Zurich. He was a postdoctoral fellow at the University of California—Santa Barbara between 1982 and 1984. Wiltzius then joined Lucent (formerly AT&T Bell Laboratories) in 1984 as a member of the technical staff. He is a Fellow of the American Physical Society and the American Association for the Advancement of Science and is currently a senior member of the IEEE.

Wiltzius can be reached by e-mail at wiltzius@lucent.com.

Tim A. Birks is currently a staff member at the Communication Optics Research Lab of Agilent Technologies Inc. His research interests focus on the design, fabrication, and characterization of nanophotonic devices.

Birks can be reached by e-mail at t.a.birks@bath.ac.uk.

Edmond Chow is an associate professor of chemistry at Rice University. His research interests include template chemistry, photonic crystals, and the properties of liquids and glasses in nanoscale environments. She received her BS degree in chemistry and physics from Stanford University in 1998 and her PhD degree in chemistry from the University of California—Berkeley in 1994. Colvin became a member of the technical staff at Bell Laboratories in 1995 after postdoctoral training there and joined the faculty of Rice University in 1996. She was recently named an Alfred P. Sloan Fellow (2000) and a Camille Dreyfus Teacher-Scholar (2001).

Colvin can be reached at Rice University, Department of Chemistry, MS 60, Houston, TX 77005, USA; and by e-mail at colvin@ruf.rice.edu.

Vicki L. Colvin is an associate professor of chemistry at Rice University. Her research interests include template chemistry, photonic crystals, and the properties of liquids and glasses in nanoscale environments. She received her BS degree in chemistry and physics from Stanford University in 1998 and her PhD degree in chemistry from the University of California—Berkeley in 1994. Colvin became a member of the technical staff at Bell Laboratories in 1995 after postdoctoral training there and joined the faculty of Rice University in 1996. She was recently named an Alfred P. Sloan Fellow (2000) and a Camille Dreyfus Teacher-Scholar (2001).

Colvin can be reached at Rice University, Department of Chemistry, MS 60, Houston, TX 77005, USA; and by e-mail at colvin@ruf.rice.edu.

James G. Fleming has been with Sandia National Laboratories since 1988, where he is a distinguished member of the technical staff. He is actively involved in micromachining process development, chemical-vapor-deposition processes, complementary metal-oxide semiconductor process integration, and three-dimensional photonic lattice design and fabrication. Fleming received his undergraduate degree from the Johns Hopkins University in 1982 and his MS and PhD degrees...
Materials Science Aspects of Photonic Crystals

from Stanford University in materials science (1984) and engineering (1987), respectively. Fleming’s thesis work concentrated on thermodynamics and kinetics studies of mercury cadmium telluride. During his graduate work, he was an Office of Naval Research Fellow, and following graduation, Fleming was awarded the Alexander von Humboldt Fellowship and worked at the Hahn-Meitner-Institut in Berlin from 1986 to 1988. His work in Berlin involved the development of FeS2 and CuInS2 vapor deposition, and currently leads the technical staff laboratories in 1994 as a member of the technical staff and currently leads an effort developing photonic-crystal devices for optical communication and display and energy applications. In 2000, Lin became an adjunct professor at the Georgia Institute of Technology and Iowa State University. Most recently, he leads the Department of Energy’s multilaboratory effort in nanostructural photonics initiatives. He is interested primarily in nanophotonics, integrated optics, silicon-based photonics, and quantum electronic devices. Lin received his PhD degree from Princeton University in 1992 and joined the IBM T.J. Watson Research Center as a postdoctoral researcher the same year. At IBM, Lin worked on wave-function symmetry of high-temperature superconductors, as well as ultrafast photoconductive switches. Lin is the recipient of Lockheed Martin’s NOVA award, the Technology of the Year award from Industry Week Magazine, and the R&D 100 award. Also, Science Magazine cited his work on photonic crystals as “one of the most important breakthroughs in 1999,” Lin can be reached by e-mail at slin@sandia.gov.

Brian J. Mangan is presently working for Blazephotonics, a start-up company located on the University of Bath campus and established to explore the commercial possibilities of photonic-crystal fibers. He was recently awarded his PhD degree from the University of Bath on the fabrication and properties of photonic-crystal fibers. He played a key role in setting up the fiber fabrication facilities at Bath and developed many of the techniques, now used routinely, used to make new types of photonic-crystal fibers. His work at the University of Bath led to the Rank Foundation awarding him a prize for his PhD thesis.

Mangan can be reached by e-mail at b.j.mangan@bath.ac.uk.

Susumu Noda joined Kyoto University in 1988 and is currently a professor in the Department of Electronic Science and Engineering. Since 2000, he has served as the research director of CREST (Core Research for Evolutional Science and Technology) at the Japan Science and Technology Corporation. His research interests focus on quantum optoelectronics, including photonic crystals and quantum nanostructures. Noda received BS, MS, and PhD degrees in electronics from Kyoto University in 1982, 1984, and 1991, respectively. From 1984 to 1988, he was with the Mitsubishi Electric Corporation and was engaged in the research of multi-quantum-well distributed-feedback lasers. Noda is a member of IEEE, IEICE (Institute of Electronics, Information, and Communication Engineers), and JSAP (Japan Society of Applied Physics). He has received the Ando Incentive Prize (1991), the Marubun Incentive Prize (1991), and the IBM Japan Science Award (2000).

Noda can be reached by e-mail at snoda@kuee.kyoto-u.ac.jp.

Philip St. J. Russell is head of the Optoelectronics Group at the University of Bath. Prior to this position, he headed a research group in the Optoelectronics Research Center at the University of Southampton, and he has also worked at Oxford University, the IBM T.J. Watson Research Center, the University of Hamburg—Harburg.
and the University of
Nice. Russell has 23 years
of experience with just
under 300 publications
on light-propagation in
waveguides and periodic
structures. He has
worked on photonic
crystals and optical
fibers for over two
decades, proposing
the original idea of
photonic-crystal fibers
in 1992. In 2000, he won
the Fraunhofer Award
from the Optical Society
of America.

Russell can be
reached by e-mail at
p.s.j.russell@bath.ac.uk.

Jörg Schilling is a PhD
candidate at the Max
Planck Institute of
Microstructure Physics
in Halle, Germany. He
fabricates and investi-
gates two- and three-
dimensional photonic
crystals based on macro-
porous silicon. His re-
search interests include
photonic crystals and
x-ray reflectivity of thin
films. Schilling studied
physics at Martin Luther
University Halle–
Wittenberg and at the
Heriot-Watt University
in Edinburgh, Scotland.
In 1999, he received
his diploma degree in
physics from the Martin
Luther University.

Schilling can be
reached by e-mail at
schill@mpi-halle.de.

Andrew J. Turberfield
is a Reader in physics at
Oxford University. He
read Natural Sciences at
Cambridge University,
then studied for a D.Phil.
degree at Oxford Uni-
versity. His research
interests are in photonic-
crystal fabrication, the
optical spectroscopy
of electron correlation
phenomena in low-
dimensional electron
systems, and bionano-
technology, in particular,
DNA nanostructures.

Turberfield can be
reached by e-mail
at a.turberfield@
physics.oxford.ac.uk.

Willem L. Vos is a
Universitair Docent
(a tenured faculty mem-
ber) in the Van der
Waals–Zeeman Institute
of the University of Am-
sterdam. His interests
include ordered and dis-
ordered photonic mate-
rials, and the physics of
conventional and soft
condensed matter. Vos
obtained his doctoraal
(MSc) degree at the Uni-
versity of Amsterdam
(1987) and his PhD
degree cum laude at
Amsterdam (1991) for
studies of phase transi-
tions at high pressures.

After a postdoctoral
Carnegie Fellowship at
the Geophysical Labora-
tory, Carnegie Institution
of Washington (1991–
1994), he joined the Uni-
versity of Amsterdam.

Vos can be reached
by e-mail at wvos@
science.uva.nl and via
URL www.thephoton-
icbandgaps.com.

Ralf B. Wehrspohn
is responsible for activities
relating to photonic
crystals and porous ma-
terials at the Max Planck
Institute of Microstruc-
ture Physics in Halle,
Germany. His research
interests include pho-
tonic crystals, thin-film
technology, silicon elec-
trochemistry, and or-
dered pore growth. He
received his diploma de-
gree in physics from the
University of Oldenburg
in 1995. He then carried
out his PhD degree at the
École Polytechnique
in Palaiseau, France, on
thin-film technology
and electrochemistry. In
1998, Wehrspohn joined
Philips Research Labo-
ratories in Redhill, U.K.,
to work on thin-film
transistors for active-
matrix liquid-crystal dis-
plays (AMLCDs). Since
the end of 1999, he has
been working at the
Max Planck Institute of
Microstructure Physics.

Wehrspohn can be
reached by e-mail at
wehrspohn@mpi-halle.de.

For further information, visit
www.mrs.org/meetings/
Or contact Member Services, Materials Research Society
506 Keystone Drive, Warrendale PA 15086 USA
TEL 724-779-3003
FAX 724-779-8313
E-Mail info@mrs.org

New in the 2001 MRS Workshop Series
Dielectric Science and New Functionality in Device
Physics for Crystalline Oxides on Semiconductors (COS)
September 11–12, 2001 • Radisson Read House Hotel and Suites • Chattanooga, Tennessee, USA

MEMS Materials Issues
September 19–21, 2001 • Eden Roc Resort & Spa • Miami Beach, Florida, USA

Advertisers in This Issue

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of Neutron Scattering to MS&E</td>
<td>Huntington Mechanical Laboratories, Inc.</td>
</tr>
<tr>
<td>631</td>
<td>Outside back cover</td>
</tr>
<tr>
<td>Chemat Technology, Inc.</td>
<td>International Union of Materials Research Societies</td>
</tr>
<tr>
<td>646</td>
<td>606</td>
</tr>
<tr>
<td>Electrochemical Society (ECS)</td>
<td>Thermionics Vacuum Products</td>
</tr>
<tr>
<td>626</td>
<td>617</td>
</tr>
<tr>
<td>High Voltage Engineering</td>
<td>John Wiley & Sons</td>
</tr>
<tr>
<td>Inside front cover</td>
<td>622</td>
</tr>
</tbody>
</table>

For free information about the products and services offered in this issue, check www.mrs.org/publications/bulletin/advertisers
or fill out and fax the inside back cover to 724-779-4397.