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The electronics revolution of the past
50 years has its roots in two scientific and
technological areas. On the one hand, there
have been tremendous advancements in
our understanding of the physics of metals,
dielectrics, and semiconductors, leading
to the development of devices such as the
transistor. On the other hand, a variety of
processing techniques such as thin-film
growth and deposition, ion implantation,
and photolithography have allowed the
massive integration of electronic function-
ality within a very small area, leading to
microprocessors and high-density memory,
among other innovations.

Our ability to control photons is in many
ways in its infancy, compared with how
we can manipulate electrons. Passive de-
vices such as optical fibers, waveguides,
splitters, and multiplexers are well devel-
oped. But as soon as more complex func-
tionality or integration is required, the
optical solutions do not yet exist. For ex-
ample, all-optical switches are still very
rudimentary and bulky, and the size of
an optical integrated circuit (IC) is most
often in the millimeter or centimeter range
rather than the submicrometer dimensions
common in electronic technology.

Nevertheless, there is a clear need to
develop new materials and concepts with
increased optical functionality for a variety
of applications. The global telecommuni-
cations market is on an extraordinarily
steep growth curve, driven largely by the
explosion of the Internet, which plays an
increasingly pervasive role in our daily
life. The demand for broadband commu-
nications networks is expected to grow for
many years to come. New approaches for
the manipulation of photons will have to
be developed to realize the more advanced
optical elements needed for networks in
the coming decade. Photonic crystals may
play an important role in this development.

A photonic crystal is a regularly struc-
tured material that exhibits strong inter-
action with light. The conceptually simplest
example of such a material is a multilayer
stack of alternating high- and low-
dielectric-constant materials. Strong inter-
action with light occurs in such a material
because of interference between the light
beams that are reflected and refracted at
all interfaces inside the material. The final
optical response is determined by the co-
herent superposition of all of these optical
waves. It has long been known that such
multilayer stacks can be engineered to have,
for example, nearly perfect reflection over
a (narrow or broad) wavelength range, a
so-called stop band.1 Thin-film deposition
techniques have made such structures
widely available. Well-known examples
of such “one-dimensional” (1D) photonic
crystals are dielectric mirrors, filters, fiber
gratings, distributed-feedback structures,
and vertical-cavity surface-emitting lasers.
Research is also being focused on “omni-
directional” mirrors that reflect light over
a well-defined wavelength range in all di-
rections, again using an alternating array
of thin films with appropriately chosen
optical properties.2 Figure 1 shows an ex-
ample of a 1D photonic crystal integrated
in an optical channel waveguide.3 In this
structure, fully based on silicon, an array
of holes was etched by using standard litho-
graphic techniques. The size and spacing
between the holes defines the wavelength-
dependence of optical transmission through
the waveguide. The importance of this
structure lies in its extremely small size
and mode volume, and the possibility of
its integration on a planar (silicon) substrate.

While many of the 1D structures men-
tioned have a wealth of applications, the
fundamental optical concept behind their
operation is relatively simple. In recent
years, there has been much activity aimed

at expanding the simple concepts of layered,
1D photonic structures to higher dimen-
sions. As first proposed by Yablonovitch4

and John,5 the optical properties of such
materials can be described by an “optical
band structure.” This concept has analo-
gies to the well-known band structure of
electronic materials in the sense that in
materials with particular structures, it pre-
dicts the existence of an optical bandgap,
that is, a range of optical frequencies that
cannot propagate in the material. This
concept is particularly intriguing in a 3D
photonic crystal, as it implies that in a
particular frequency band, spontaneous
emission would be completely suppressed.
Initial searches for a structure that would
possess a full bandgap led to fcc crys-
talline structures, but they failed to yield
positive results. Soukoulis et al. made the
important discovery that diamond sym-
metry eliminated a degeneracy in the
band diagram, thus opening up a band-
gap in all crystal directions.6 In the past
few years, great progress has been made
to realize such structures experimentally.

While 2D crystals seem less appealing
because of their lack of optical control
over the third dimension, they have the
advantage of possible integration with
planar optical-waveguide technology. In
addition, external probes can be used to
determine properties inside the crystal.
The group led by Joannopoulos has pro-
posed a large variety of 2D structures,
many of which are now being studied
experimentally.1 As an example, Figure 2
shows a simulation of the propagation of
an optical mode traveling around a sharply
bent waveguide in a 2D photonic crystal
composed of a cubic array of dielectric
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Figure 1. Scanning electron micrograph
of a one-dimensional silicon photonic
crystal integrated in an optical channel
waveguide.
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cylinders. Note that this particular prop-
erty of the photonic crystals is due to a
carefully chosen defect, that is, a missing
row and column of cylinders. Indeed, de-
fects and disorder play an extremely im-
portant role in photonic-crystal research,
as they enable the tailoring of particular
properties for specific wavelengths.

The first experimental realizations of
3D photonic crystals were for wavelengths
in the microwave region. Yablonovitch
and collaborators7 invented an ingenious
scheme of holes made in a dielectric using
mechanical drilling (see Figure 3). This
structure is probably the first 3D structure
with a full bandgap in the microwave
regime. Obviously, many applications of
photonic crystals are in the visible wave-
length range or the near-infrared telecom-
munications3 window (1.3 �m, 1.5 �m),
and submicrometer resolution in the fabri-
cation technology is therefore required.
This can be done by taking advantage of

the latest techniques in submicrometer
patterning, initially developed for the IC
industry. As an example, Figure 4 shows a
2D photonic crystal composed of Si pillars
with diameters as small as 205 nm made
using high-resolution lithography.8 Alter-
native methods such as the self-assembly
of colloids have led to important new
photonic-crystal fabrication technology as
well. A promising example is shown in
Figure 5. A completely different approach
to building 3D structures with micrometer-
scale features was demonstrated by Marder
and collaborators.10 Using two-photon
polymerization of photoresists and ad-
vanced scanning tools, they built struc-
tures such as those in Figure 6.

Semiconductors such as Si and GaAs
possess the high dielectric contrast and
low absorption required for a full pho-
tonic bandgap in two or three dimensions.
At the same time, photonic crystals made
of dielectric materials with a lower refrac-

tive index, such as SiO2, TiO2, and poly-
mers, while not having a full bandgap,
can still have strong interaction with light
and, therefore, interesting photonic prop-
erties. More recently, theory on photonic
crystals partly composed of metals indi-
cates a wealth of interesting phenomena
in such materials, and the first experi-
ments in this area are just appearing.

This issue of MRS Bulletin gives a snap-
shot of current developments and future
trends in 2D and 3D photonic-crystal re-
search and technology.

Optical fiber is the backbone of all-
optical networks. Knight et al. review new
concepts in microstructured optical fibers
that have 2D patterns formed by drawing
structured fiber preforms. In these fibers,
light propagates in a core mostly com-
posed of air, and several nonlinear prop-
erties are described.

The contribution by Noda covers the
development of 2D and 3D photonic crys-
tals at optical wavelengths made with
III–V semiconducting materials. He dis-
cusses applications to ultrasmall optical
ICs, including sharp bends in waveguides,
lasers, and filters. He also presents a 3D
photonic crystal with a full photonic band-
gap in the near-infrared. The structures
are made using state-of-the-art, high-

Figure 2. Simulation of the propagation of an optical mode traveling around a sharply bent
waveguide in a (two-dimensional) 2D photonic crystal composed of a cubic array of
dielectric cylinders.The calculation is performed for a refractive index n � 3.4, and the
spacing between the centers of the cylinders is 0.35� the wavelength (e.g., at a wavelength
of 1.55 �m, the spacing is 550 nm).

Figure 3. Schematic diagram of the
construction of an fcc lattice.Three sets
of holes are drilled on a 35� tilted axis
into a slab of material. For microwave
length scales, these holes can be
drilled mechanically, whereas in the
near-infrared, reactive ion etching has
been used.
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resolution, compound-semiconductor proc-
essing technology.

Wehrspohn and Schilling describe elec-
trochemical routes to building arrays of

pores in silicon and aluminum oxide. These
structures show photonic bandgaps in
two dimensions. Optical characterization
of these structures, including waveguides,
is presented.

The article by Lin et al. reviews several
examples of 3D photonic crystals with dif-
ferent symmetries that have been built
using silicon VLSI (very large-scale inte-
gration) tools. A 3D photonic crystal with
a full photonic bandgap in the near-
infrared is discussed. They also show
some of the basic building blocks for pho-

tonic structures such as waveguides and
microcavities.

A radically different materials approach
to building photonic crystals is presented
by Turberfield. Using holographic lithog-
raphy, his group is able to build 3D struc-
tures in thick layers of photoresist. This
technique is well suited for constructing
crystals with submicrometer periodicity
and a broad choice of crystal symmetries.

The contribution by Colvin covers ap-
proaches to building 3D microperiodic ob-
jects using colloidal self-assembly. These
photonic crystals can be replicated using
a variety of techniques, and optical and
structural characterization are discussed.

The last article in this issue, by Vos and
Polman, discusses recent advances in the
control of the spontaneous emission of light
in photonic crystals. The concept of local
optical density of states is described, as
well as experiments on the incorporation
of optical probes inside photonic crystals.

We hope that this issue of MRS Bulletin
will stimulate the materials research com-
munity and enable further progress toward
achieving photonic crystals with desired
properties, including full control of spon-
taneous emission, and applications in de-
vices such as low-threshold lasers, low-loss
waveguides, multiplexers, optical switch-
ing elements, and photonic integrated cir-
cuits with enhanced functionality.
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Figure 4. Scanning electron micrograph of a periodic array of silicon pillars fabricated using
deep anisotropic etching.The silicon pillars are 205 nm in diameter and 5 �m tall. This
structure possesses a bandgap of around 1.5 �m for transverse magnetic polarization.
By removing an array of pillars, a waveguide bend may be fabricated. Input and output
waveguides are integrated with the photonic crystal.

Figure 5. A scanning electron
micrograph of a 3D photonic crystal.
This structure was assembled by
sedimentation of monodisperse
colloidal silica on a template, thus
forming an fcc structure. Subsequently,
molten selenium, which has an index
of refraction of 2.5 in the near-infrared
and very low absorption, was imbibed
into the interstitial space, and the
silica was etched away to produce
a high-dielectric-constant replica.
(From Reference 9.)

Figure 6. 3D microstructures produced
by two-photon polymerization.
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