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ABSTRACT: We experimentally investigate the resonant
modes of plasmonic patch antennas using angle-resolved
cathodoluminescence imaging spectroscopy. Plasmonic modes
residing in the patch antenna are locally excited using a
scanning electron beam, providing high-resolution spectral and
spatial maps of the modes of patch antennas corresponding to
variations in the local density of optical states in the antennas.
A semianalytical model is used to qualitatively explain the
experimentally observed modes. Furthermore, emission
patterns, directionality, and beam steering properties of
patch antennas are studied in different patch sizes and at
different wavelengths. Strong directionality and control over the output beam angle as a function of excitation position are
observed. A distributed dipole model is used to explain the radiation pattern and beam width of the patch antenna radiation,
which shows a good agreement with experiment.
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For technological applications in improving light sources,
LEDs, and fluorescence microscopy, as well as for

breakthroughs in quantum optics, many efforts are devoted to
optimizing light extraction from single emitters.1,2 Among
strategies to realize ultrabright sources, researchers have
pursued integration of active materials with dielectric structures
that include microcavities,3 Bragg stacks, photonic crystals,4,5

and integration of sources with metallic nano-objects.6 In
particular, the field of “plasmonics” promises to enhance the
brightness and directivity of light sources through a set of
effects. First, at Ag, Au, and Al surfaces and particles, plasmon
resonances feature strongly confined fields with very high per-
photon field strength. On this basis one expects large local
density of optical states (LDOS) enhancements that accelerate
spontaneous emission decay of emitters into plasmon modes.
Such acceleration of excited-state decay promises very high
fluorescent photon flux per emitter when emitters are pumped
near saturation. As a second effect, plasmonics can aid
outcoupling of light into advantageous directions. The most
established methodology is to generate “phased array antennas”
such as Yagi−Uda plasmon antennas,6−10 bull’s eyes,11,12 and
plasmonic lattice antennas,13,14 in which plasmon scatterers
driven by the fluorophore act as secondary coherent sources so
that a directional emission pattern can be obtained. A second,
more recently proposed method is to use comparatively large
scatterers in which a coherent superposition of multipoles can
be excited that jointly show directional emission.15,16 Finally, a
third approach that was proposed in the pursuit of ultrabright
single-photon sources is the use of so-called “patch
antennas”.17,18 Such patch antennas rely on patches of metal
several wavelengths across in which a nearby emitter can excite
planar guided modes that scatter out at the edges.19

A particularly promising patch antenna that was recently
introduced in refs 17 and 18 is based on circular patches with a
metal−insulator−metal (MIM) geometry. In the radio
frequency domain patch antennas are commonly used, as
they have a very low profile and can be simply mounted on a
flat surface over a ground plane.20 When operating at a
frequency that corresponds to the lowest order resonance
where the antenna size matches half the wavelength, as is
common for RF frequencies, one obtains a modest gain in
directivity. In the optical domain, the proposition has been to
operate at higher order resonance conditions, where multiple
wavelengths fit in the patch diameter, which allows much
higher directivity. Moreover, proper tuning of the metal−
insulator−metal geometrical parameters ensures large Purcell
factor designs. Belacel et al.18 experimentally realized such
patch antennas by making a thin dielectric film loaded with
quantum dots on a thick gold surface. After pinpointing single
quantum dots in the film, they could position circular gold
patches of micrometers across centered on top of a single
quantum dot and study the fluorescence decay rate before and
after deposition of the patch. This type of geometry is expected
to show a large LDOS enhancement due to the fact that the
MIM geometry supports a guided plasmon mode that is tightly
confined, with a very strong field in the gap, normal to the
metal surfaces. Indeed, measured Purcell factors up to 80 have
been reported.18 Furthermore, theoretical analysis indicates that
such MIM patch antennas give directional emission in a narrow
“doughnut beam” normal to the patch, with an angular width of
around 35° and a null at 0°, at least for embedded sources
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oriented along the axis of maximum Purcell factor, i.e., normal
to the patch. Observations rather point to narrow beams
without a central null, which has been attributed to the
directivity imparted on differently aligned and oriented sources.
Directional emission is expected to come about because the
tightly confined guided MIM mode excited by the emitter
propagates to the disk edge, where it couples out as radiation
into the far field. Since the entire patch edge is a coherent
radiator, emission is expected to be directed, as fluorescence
back-aperture imaging indeed shows according to ref 18.
The physics of patch antennas is expected to contain a set of

salient features that are difficult to completely unravel in
fluorescence experiments such as in single-emitter experiments,
owing to the fact that one ideally would scan the point of
excitation and the emission wavelength continuously while
examining enhancements of the total emitted power, as well as
directivity for different disk sizes. In this paper we perform
exactly such a study using angle-resolved cathodoluminescence
imaging spectroscopy (ARCIS).21,22 To highlight the expected
complexity of this system, calculations of the Purcell factor
indicate that one expects a very large set of resonant modes
with different radial and azimuthal quantum numbers that are
simultaneously involved.17,23,24 Cathodoluminescence imaging
not only can be used to reveal such a complicated dependence
of the local density of states on both frequency and excitation
position but also allows one to answer the question of how such
complex multimode systems can give robust directionality. This
paper is structured as follows. First we present a simple
analytical model for the mode structure and LDOS of circular
MIM patch antennas. Subsequently we present measured
spatial cathodoluminescence (CL) maps. Spatial maps indeed
show a marked spatial and spectral structure in local density of
states. Finally, we turn to the angular characteristics of
differently sized patch antennas at various wavelengths and
excitation positions. Commensurate with semianalytical model-
ing results, we find that patch antennas are more directional as
they grow in size and that they show controllable beam steering
as the excitation position is swept from the disk center to
approximately half their radius.

■ THEORETICAL ANALYSIS AND CALCULATION
Figure 1a,b shows a sketch and scanning electron microscope
(SEM) image of the sample geometry studied in this work,
which is a MIM patch antenna geometry consisting of an
extended gold substrate on top of which we fabricated circular
patches that combine a 50 nm silica spacer and a 20 nm gold

layer. In this section we set up a simple analytical model for the
expected mode structure and spatially dependent Purcell factor.
Resonant modes of the patch antennas are analytically
investigated using a Bessel-type standing-wave resonator
model introduced by Filter et al.23 They considered circular
resonators that support propagating surface plasmon polaritons
(SPPs) confined within the disk area. Here we apply this model
to describe vertically stratified patch antennas that have a MIM
geometry.
The MIM geometry of the patch antennas supports two

transverse-magnetic (TM) plasmonic modes with opposite
symmetries. Figure 1c shows a numerical calculation of the real
(solid curves) and imaginary (dotted curves) part of the
dispersion relation of the two modes for an infinitely extended
MIM structure with the same layer thicknesses as our patches.
As input for this calculation we use tabulated optical data,25

inserted in a standard stratified system solver that solves for a
complex wave vector at real frequency.26 Symmetric (blue
curve) and antisymmetric (red curve) modes are defined
according to the symmetry of the magnetic field profile inside
the structure as shown in Figure 1a. For comparison, the
dispersion relation of the gap material, i.e., silica (gray dotted
line), and the light line (black dotted line) of the surrounding
air are also presented in the dispersion diagram. The
antisymmetric mode has a dispersion relation very close to
the light line, indicating a mode index close to air. However, the
symmetric mode has a dispersion well beyond the light line,
which indicates that the mode is strongly confined to the metal.
This strongly dispersive and strongly confined MIM mode has
been well studied in scattering experiments by Miyazaki et
al.,27,28 its dispersion has been studied in cathodolumines-
cence,29 and this mode has been identified as responsible for
large Purcell enhancements18,30 for dipoles placed in the gap
and oriented normal to the interfaces. On the basis of this high
Purcell factor for polarizations matching the incident electron
beam in our experiment, we expect to mainly excite the
symmetric MIM mode in our CL experiment. Since the
antisymmetric mode is weakly confined and almost index-
matched with air, we expect that it does not contribute strongly
to the scattered field at the abrupt edges of the antenna.
Therefore, in the following we restrict our analysis to the
symmetric mode contribution, which is also the mode identified
as relevant in spontaneous emission experiments on the basis of
Purcell factor calculations.18

In order to estimate the total collected CL intensity, we set
up a simple semianalytical model for the local density of states

Figure 1. (a) Schematic of a patch antenna. The planarized MIM structure supports two transverse magnetic modes (Hy) with opposite symmetries.
(b) SEM image of a fabricated patch antenna with a diameter of 1.8 μm. (c) Real (solid curves) and imaginary (dotted curves) parts of the dispersion
relation of the planarized MIM structure of part (a) with two supported transverse magnetic modes. On the axes, k0 and β represent free-space and
MIM wavenumbers, respectively. Glass dispersion relation and light lines are also indicated for comparison.
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in the patch antenna starting from the model of Filter et al.,23

which proceeds as follows. First we find the eigenfrequencies
and mode profiles of eigenmodes. This step requires as ansatz
for each mode profile that it factorizes as

= ϕE r z a z J k r( , ) ( ) ( )ez
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m
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where a(z) is the MIM waveguide mode profile, m is the
azimuthal quantum number, Jm is a Bessel function, and kMIM is
the complex wave vector of the MIM mode at frequency ω. We
note that in this ansatz, one assumes that the infinite-system
symmetric MIM mode dominates. This means not only that the
infinite-system asymmetric MIM mode is neglected but also
that any contribution of modes that are bound to the patch
edge and have in-plane wavenumber different from kMIM are
neglected. We expect this ansatz to be best for excitation
positions away from the patch edge and for sufficiently large
patches. According to Garcıá de Abajo and Kociak,31 an
impinging electron beam excites a structure not according to its
LDOS at some height z but rather according to a projected
LDOS obtained by integrating along the electron beam
trajectory. We note that within our ansatz the z dependence
and in-plane dependence factorize, meaning that integrating
over z will not result in different information unless one goes
beyond our ansatz.
From our ansatz, a discrete set of eigenmodes is obtained by

imposing a reflective boundary condition at the MIM edge,
which we write down so as to include a possible phase jump ϕ
upon reflection (see Methods). In a second step, we estimate
the LDOS from an expansion in terms of eigenmodes. The
local density of states for a z-oriented dipole at position r is
proportional to
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Here the Lorentzian (ω; ωn,m, γ) replaces the traditional δ-
function δ(ω2 − ωn,m

2 ) to account for the fact that the patch
antenna modes have a large frequency width due to ohmic and
radiative damping. For our calculations, the only two adjustable
parameters of this model, i.e., the phase shift ϕ and damping γ,
are extracted by matching to a COMSOL simulation (see below
and Methods section for further details).
Figure 2a shows the calculated spatial LDOS maps of patch

antennas for five different disk sizes. It should be noted that
while each eigenmode has an azimuthal dependence (eimφ

dependence), the LDOS does not. The wavelength on the
vertical axis is converted to dimensionless wavenumber
kMIM′ (λ0)d in order to facilitate direct comparison between
different disk sizes, where kMIM′ is the real part of the MIM wave
vector as reported in Figure 1c. For each disk, the physical
frequency range that we report on corresponds to wavelengths
from 525 to 4000 nm. For each disk size, the LDOS shows
resonances, and the resonant bands show clear radial
oscillations. In the RF domain one commonly uses the lowest
order resonance, i.e., a λ/2 resonance spanning the disk
diameter.20 The highly directional operation proposed by
Belacel18 occurs at the resonant bands in which many modes
participate. It would be tempting to explain the radial
oscillations at higher size-to-wavelength ratios simply as a
sequence of modes with monotonically increasing radial
quantum number. However, the reader should be warned
that radial and angular quantum numbers coexist, meaning that
at higher frequencies the LDOS is composed of many modes,
including those with high radial quantum number n and low
azimuthal quantum number m, and vice versa. For reference,
Figure 2b shows a histogram of the number of modes at
different normalized wavenumbers and disk sizes corresponding
to calculation of the modes in Figure 2a. The number of modes
contributing to the LDOS within frequency bands of width γ is
typically on the order of 10. The oscillations in LDOS vanish
for higher wavenumbers due to larger ohmic damping at
shorter wavelengths. Since the eigenfrequencies are only
dependent on the fundamental quantity kMIM′ (λ0)d (i.e., the
ratio between two length scales, the MIM wavelength and the
disk size), one expects eigenmodes of differently sized disk
antennas to occur at the same normalized wavenumber.
However, this scaling is not perfect due to dispersion in the
imaginary part of the MIM wave vector. The radial oscillation
of the modes smear out for larger disk sizes due to the fact that
larger disks support many modes that overlap and therefore
cancel out the oscillations. Indeed for a very large disc, one
would expect the LDOS to converge to that of a semi-infinite
MIM film, which would be featureless except for Friedel
oscillations32 right at the film edge.
As further verification of this analytical model, we have also

calculated the LDOS for patch antennas of 0.6 and 0.8 μm
diameter using full-wave finite element simulations (see
Methods for implementation in COMSOL). Figure 3 plots
the result for the radiated power as a function of normalized

Figure 2. (a) Calculated spatial LDOS maps for five different disk sizes as a function of normalized wavenumber kMIM′d and distance to the center of
the disk. (b) Histogram of the number of modes participating in the calculation of (a).
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wavenumber and as a function of dipole position. For each disk
size, the left part of the plot shows the calculated LDOS map
corresponding to Figure 2a, and the right part shows the
COMSOL-simulated maps. We have adjusted the phase and
the resonance width in our calculation according to the
COMSOL simulation for a range of kMIM′ values between 5 to
10 corresponding to the fundamental mode. We find good
agreement between the analytical model and the full-wave
simulation. Indeed, the COMSOL simulation likewise predicts
a set of resonances, of which the lowest is localized at the disk
center, while for higher frequencies resonances have an
increasing set of antinodes across the disk perimeter and
become increasingly close in frequency.

■ SPATIAL CATHODOLUMINESCENCE MAPS
In this section, we first present the results of the experimental
CL measurements on patch antennas with different diameters,
and then we compare them to the calculated LDOS maps. This
comparison is motivated by the recently developed notion that
the rate of excitation of the optical modes in plasmon structures
by CL is approximately proportional to the LDOS,22,33 so that
the radiated CL intensity is expected to be proportional to the
radiative part of the local density of optical states in the
antenna. Figure 4 shows spatial maps of CL intensity for a

typical patch antenna with disk diameter of 1.8 μm at four
different wavelengths integrated over a bandwidth of 10 nm.
Here, each pixel corresponds to a position of the electron beam
at which the CL intensity is plotted. Due to the high spatial
resolution of the scanning electron beam, a very detailed spatial
map of the collected CL intensity can be obtained. The spatial
intensity maps exhibit concentric rings within the disk area,
reflecting the circular symmetry of the antenna. It should be
noted that, since CL is an excitation spectroscopy technique,
the profiles do not correspond to maps of (superpositions) of
modes, but rather reflect the total power radiated out of the
system due to the different superposition of modes excited for
each excitation position on the patch antenna. In order to
visualize the measured LDOS of the antennas more clearly,
spatial CL intensity maps are azimuthally averaged at each
wavelength (10 nm bandwidth), exploiting the radial symmetry
of the patch antennas. Figure 5a shows azimuthally averaged

CL intensity maps of five different patch antennas as a function
of wavelength and distance to the center of the antenna. In
order to directly compare the CL intensity maps of different
disk sizes, wavelength values (λ0) in Figure 5a are converted to
dimensionless quantity kMIM′ d using the calculated dispersion
relation of the infinite MIM structure kMIM′(λ0) (Figure 1c) and
the disk diameter d.
In order to examine the relation between the CL intensity

and LDOS, we compare the CL maps of Figure 5 to the LDOS
maps of Figure 2 that were calculated with the simple model of
Filter et al.23 Experiment and calculation show qualitative
similarities. These include the alternating occurrence of one,
two, and three antinodes in radial LDOS dependence as one
sweeps frequency, smearing of the radial oscillations at higher

Figure 3. COMSOL-simulated radiation power for two disk diameters
of 0.6 and 0.8 μm as a function of normalized wavenumber and
distance to the center of the disk. For each disk size, the right part
shows the COMSOL simulation radiated power, while the left part
shows the corresponding calculated LDOS map of Figure 2a.

Figure 4. Spatial CL intensity maps of a typical patch antenna with
disk diameter of 1.8 μm at four different wavelengths integrated over a
bandwidth of 10 nm. CL intensity data are corrected for the
background (typically around 100 cts/px/0.25 s) and the system
response and are normalized to unity at each wavelength. The
maximum counts of the raw map data before correction are equal to
320, 590, 370, and 350 cts/px/0.25 s for wavelengths from 600 to 900
nm, respectively.

Figure 5. (a) Azimuthally averaged CL intensity maps as a function of
wavelength and relative distance to the disk center for five disk sizes:
0.6, 0.8, 1.3, 1.8, and 2.8 μm. (b) CL intensity maps with normalized
wavenumber for different disk diameters corresponding to (a). CL
intensity data are corrected for the background (typically around 100
cts/px/0.25 s) and the system response and are normalized to unity at
each disk size. The maximum counts of the raw map data before
correction are equal to 1390, 1030, 990, 630, and 960 cts/px/0.25 s for
increasing disk size, respectively.
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wavenumbers due to ohmic losses, and for large kMIM′ d
concentration of radial LDOS structures at the disk edges.
Despite the qualitative similarities, there is no one-to-one

quantitative correspondence between the measured and
calculated spatial mode maps. We identify several probable
reasons for this discrepancy. First, we have used patch antennas
in the size range corresponding to strong angular directivity,
i.e., disks several micrometers across. Such large disks have a
dense plethora of modes, meaning that it is very difficult to
obtain a one-to-one alignment of mode structure between
experiment and theory. Second, we approximated the CL
process in our model as entirely due to the LDOS of symmetric
MIM resonances, since this is the mode that presents the
largest Purcell factor in the gap for vertically oriented dipoles.
This simplification neglects that the infinite layered system also
supports an asymmetric MIM mode that can also contribute to
CL, as analyzed by Cai et al. and Barnard et al.34,35 Also, the
ansatz of Filter et al.23 ignores contributions at wave numbers
different from kMIM that could result from plasmons strongly
localized at the patch edge. Especially at small patch size,
neglecting such edge effects could deteriorate the comparison.
Even if the simple model is accurate for LDOS (calculated with
COMSOL), it need not be for CL, since in CL one needs to
integrate contributions from along the electron beam path as
worked out in the theory by Garcıá de Abajo and Kociak.31

Fundamentally, it would be interesting to compare a full
numerical evaluation of the theory by Garcıá de Abajo and
Kociak31 for CL with the full numerical evaluation of the
Purcell factor that we report here, to assess why the Purcell
factor does, but CL does not, trace the simple model by Filter
et al.23 Unfortunately, such a calculation appears prohibitively
difficult, given that just mapping the Purcell factor in a single
plane already requires on the order of several days of
computation. In experiment, incoherent background radiation
such as fluorescence emission of the silica layer can also
contribute to the collected CL intensity. Incoherent back-
ground radiation should not be expected to give a featureless
background. Rather, also fluorescence generated incoherently in
the patch spacer can result in a spatially dependent and patch-
size-dependent brightness, since the brightness of incoherent,

inefficient sources inside a photonic system will trace out its
orientation-averaged radiative LDOS. Finally, inaccuracies in
fabrication such as edge roughness evident in the SEM
micrograph (Figure 1b) can influence the experimentally
measured data.

■ ANGULAR EMISSION PATTERNS
Metal−insulator−metal patch antennas were first proposed for
their large directivity. Fluorescence experiments have examined
the directivity for single quantum dots for select quantum dot
positions and disk sizes.18 Cathodoluminescence provides a
unique opportunity to map the directivity in a well-normalized
fashion as a function of both disk size and where the system is
excited. Moreover, the well-defined polarization and coherence
of the induced transition dipole facilitate the interpretation and
modeling of the radiation pattern, as will be discussed in this
section.
Angular radiation patterns of the patch antennas are obtained

by directly projecting the CL radiation collected by the
parabolic mirror onto an imaging CCD where each pixel
corresponds to a unique emission angle. A simple coordinate
transformation21 allows converting raw CCD images into polar
(θ, φ) diagrams. Figure 6a shows the measured angular
radiation patterns of patch antennas for different disk diameters
and detection wavelengths, in each case with e-beam excitation
at the disk center. Here, the disk diameter increases from left to
right and the detection wavelength increases from top to
bottom. Due to the symmetry of the structure and the
excitation, radiation patterns are expected to be symmetric
around the axis normal to the sample (θ = 0°, center in each
polar diagram). However, for some measurements, a slight
asymmetry is seen. This asymmetry likely arises from our
measurement strategy, since we collected radiation patterns in
sequences where we use a finite sampling of e-beam positions
(taking around 18 to 25 points) along the disk diameter. The
sampling point targeted at the disk origin in some cases did not
coincide exactly with the disk center, yielding a residual
asymmetry. Overall, the radiation patterns show a strong
dependence on the disk diameter and detection wavelength.
Notably, the radiation patterns generally become more

Figure 6. (a) Radiation patterns measured for different disk diameters (from left to right 0.6, 0.8, 1.3, 1.8, 2.8 μm) at different detection wavelengths
(from top to bottom 600, 700, 800, 900 nm) for e-beam excitation at the center of the disk. For quantitative signal strength reference, CL intensity is
reported in “analog-to-digital converter units” (ADU), i.e., CCD camera counts, per steradian, and for the given 20 s acquisition time. We have no
measured data for the 2.8 μm disk size at 900 nm. (b) 2D cross-cuts corresponding to patterns indicated by colored thick dotted boxes in (a).

ACS Photonics Article

dx.doi.org/10.1021/ph500225j | ACS Photonics 2014, 1, 1134−11431138

http://pubs.acs.org/action/showImage?doi=10.1021/ph500225j&iName=master.img-006.jpg&w=382&h=191


directional with decreasing wavelength and increasing disk size,
commensurate with the notion that the diffraction pattern of a
coherently emitting disk of size d has a radiation pattern spread
over an angle d/λ. The most directional radiation patterns show
beam widths on the order of 30°. Moreover, the shorter-
wavelength/larger-disk regime is accompanied by the emer-
gence of sidelobes at larger angle. The appearance of more
closely spaced fringes alongside main lobes is generally
expected for larger antennas (smaller wavelength), on the
basis of Fourier arguments: since the far field is approximately
the Fourier transform of a near-field current distribution, more
extended current distributions show sharper and denser
diffraction rings. In addition, we note that a doughnut-like
structure for the central lobe is evident for some data sets that
are similar to the emission pattern of vertical dipoles at
interfaces.
A clear correlation between the appearance of a doughnut-

like pattern and the size of the disk or the detection wavelength
is not immediately apparent in our experimental data. We note
that a doughnut-like symmetry would be expected quite
rigorously from symmetry in a fully coherent excitation
experiment. Indeed, if one excites a cylindrically symmetric
structure at its symmetry point with a z-oriented dipole, a
decomposition of the emitted radiation into radial and
azimuthal contributions must have zero azimuthal content.
Any nonzero content would indicate a preferred handedness or
a preferred in-plane linear polarization, which are both absent
by symmetry. Since the emitted radiation must be radially
polarized, one expects a null in the normal direction. Indeed,
this notion is consistent with the null observed in previous CL
experiments for transition radiation, excitation of small plasmon
disks, and also the radiation patterns calculated in ref 18 for
patch antennas. Radiation in the center of the polar images
hence points to either symmetry-breaking in the excitation and
light out-coupling of the structure or the presence of incoherent
in-plane-polarized contributions to the CL signal, such as
fluorescence generated in the silica spacer layer.
In an attempt to classify the reported radiation patterns and

correlate the presence or absence of a central minimum to the
degree to which an incoherent contribution is present in the
sample, we have attempted to classify frequency/wavelength
combinations as being on or off resonance according to the
measured excitability maps. We expect those patterns measured
on resonance to show a clear minimum at the normal radiation
angle, as consistent with the coherent excitation and out-
coupling of the MIM mode, while for patterns taken at an off-
resonance combination we expect a stronger incoherent
component. While not all 19 frequency/diameter combinations
plotted in Figure 6 can be uniquely assigned as being exactly on
or off resonance, we could assign four combinations as clearly
on and seven as clearly off resonance. Indeed, according to the
CL maps of Figure 5, we can identify λ = 900 nm at d = 1.3 μm
and d = 1.8 μm, as well as the combinations d = 0.6 μm and λ =
700 nm and d = 1.8 μm and λ = 600 nm as combinations for
which the CL maps clearly show a strong peak for excitations at
the center of the disk. The corresponding radiation patterns of
these four combinations are indicated by colored thick dotted
squares surrounding the data in Figure 6a, and the
corresponding 2D cross-cuts are plotted in Figure 6b. Notably
for these combinations, radiation patterns indeed clearly
present a doughnut-like symmetry. On the other hand, we
identified combinations for which CL maps of Figure 5 show
clear minima at the center of the disk. These “off-resonant” disk

combinations are indicated by thin black dotted lines in Figure
6a. In contrast to the “on-resonant” combinations, here the
radiation patterns have peaks in the normal direction. Taking
into account that for these combinations the mode feeding
happens indirectly, this suggests that incoherent radiation
processes are responsible for obscuring doughnut features from
the radiation patterns. That the presence of the doughnut
feature is sensitive to nonidealities in disk shape, disk−source
alignment, or incoherent background contributions while still
showing overall directivity is commensurate with the
fluorescence measurements by Belacel et al.,18 in which strong
directivity but no central null in the radiation pattern of
quantum dot clusters centered in the patch was found. In their
work, they explained this by randomness in transition dipole
orientation as well as positioning of the fluorophores.
As a measure of directivity of the patch antennas and in order

to quantify the radiated beam width of the patch antenna, we
extracted the half width at half-maximum (HWHM) values
(ignoring the central null if present) from the 2D radiation
patterns of Figure 6b and plotted sin(HWHM) as a function of
the wavelength-normalized disk diameters (d/λ) in Figure 7.

Here, measured values for different disk sizes are marked with
different symbols and detection wavelengths are displayed by
different colors. An overall decrease of the beam width is
observed as the normalized disk size is increased, which is in
agreement with the expectation on the basis of simple Fourier
optics arguments, whereby the beam divergence of radiation
scales inversely with source size.
We find that radiation patterns of patch antennas strongly

depend on the position of the excitation source. In order to
explore the position dependence of the radiation pattern, we
measured the radiation pattern for e-beam excitations along
cuts through the patch antennas from the left edge to the center
to the right edge for all disk diameters and detection
wavelengths. Figure 8a shows the radiation pattern of a typical
patch antenna (d = 2.8 μm, λ = 700 nm) for different e-beam
excitation positions from the left edge to the center of the disk.
The emission angle of the main lobe clearly tilts away from the
normal direction as the excitation position is shifted away from
the disk center and varies from zenithal for central excitation to
grazing, once the excitation reaches a point midway between
center and edge excitation.

Figure 7. Beam width of the patch antennas defined as sin(HWHM)
as a function of wavelength-normalized disk diameters. Symbols:
Measured beam width values. Lines: Calculated beam width using
scalar model (blue) and radially polarized dipole model (black).
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In order to better illustrate the beam steering of the patch
antennas, for a selected set of disk diameters and detection
wavelengths, we examined 2D cross-cuts (not shown)
generated by averaging the radiation pattern over 20 degree
azimuthal range around ϕ = 90°. We calculated the emission
angle of the beam defined by the maximum lobe (θmax) for disk
sizes and wavelengths where beaming was pronounced at
central excitation. We plot the results as a function of the
excitation position r normalized to disk radius R in Figure 8b.
The radiation angle depends linearly on the position of the e-
beam excitation in a manner that is remarkably similar for all
antenna and wavelength combinations. It should be noted that
the plotted error bars do not indicate the error in determining
θmax but serve to indicate the width of the beam in θ. For each
excitation position, wavelength, and disk size, we extracted the
angular width of the beam by calculating the standard deviation

of the radiation pattern around the main lobe. The results are
depicted as error bars in Figure 8b and are also plotted
separately in the inset of Figure 8b. The directionality of the
beam is highest for excitation of the disk at the center and
decreases for excitations away from the disk center. A
qualitative explanation is that the radiation is due to excitation
of MIM plasmons as a cylindrical wave emanating from the
excitation point that scatters out into the far field at the disk
edge. For central excitation the entire edge of the disk radiates
coherently with equal amplitude. As the excitation approaches
the edge of the disk, however, only a fraction of the edge close
to the excitation point dominates the radiated signal. Thus,
shifting toward the edge reduces the effective source size and
hence directionality.

■ SIMPLE MODEL FOR ANGULAR EMISSION
PATTERNS

In order to analytically calculate radiation patterns of the patch
antennas, we used a model based on the interference of the
scattered fields at the edge of the disks. In this model, we
assume that the local excitation at r0 launches a cylindrical
outgoing wave

| − |

| − |

r r
eik r r

0

MIM 0

(2)

in the patch that scatters out at the edge. In a simple analysis,
the far-field radiation pattern is the Fourier transform of the
amplitude and phase pattern imprinted on the disk edge. We
will refer to this model as “scalar”, as it does not contain
polarization effects. In full-wave COMSOL simulations we have
observed that if one sets up a MIM mode in the disk, the E-field
at the disk edge is mainly polarized in the radial direction (three
to one ratio relative to vertical polarization). A first estimate of
the radiation pattern with polarization effects included is hence
to discretize the disk edge as radially oriented dipoles with
amplitude and phase given according to eq 2. Figure 9a shows a
set of measured radiation patterns (d = 1.3 μm, λ = 700 nm),
with Figure 9b and c showing the calculated radiation patterns
for the radially polarized and scalar model. Reasonable
correspondence is obtained in terms of the angle at which
the central lobe occurs, its width, and the occurrence of side
lobes at angles far from the main lobe. For comparison with
experiment, calculated beam widths are plotted in Figure 7 for
the scalar (blue line) and radially polarized dipole model (black
line). A good agreement is observed with experiment for the

Figure 8. (a) Measured radiation pattern for different excitation
positions for a typical patch antenna (d = 2.8 μm, λ = 700 nm). From
left to right: e-beam excitation position at the center of the disk to the
right edge of the disk. (b) Emission angle for a selected set of disk sizes
and wavelengths as a function of normalized excitation distance from
the disk center. Error bars indicate the angular width of the beam
(standard deviation) with values plotted in the inset.

Figure 9. (a) Measured radiation pattern as a function of excitation position for a typical patch antenna (d = 1.3 μm, λ = 700 nm). Calculated
radiation patterns from (b) radially polarized dipole model and (c) scalar model. From left to right: e-beam excitation position at the center of the
disk to the right mid-edge (x = r/2) of the disk.
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radial model, which is consistent with results from COMSOL
simulations.
At first sight it might seem surprising that such excellent

correspondence for radiation patterns is obtained taking as a
model just the patch edge driven by the cylindrical outgoing
wave of eq 2, without resorting at all to the complicated mode
decomposition underlying the LDOS calculation. Explicit
analysis shows that the mode decomposition, i.e., first
projecting a local excitation at r0 into modes and then
constructing radiation patterns by coherent superposition,
likewise results in a good match to the observed radiation
patterns. The physics resolving this seeming paradox is hidden
in Figure 2b, which shows that especially large diameter disks
support a large number of modes of various radial and
azimuthal quantum numbers at any given frequency. The key
physics is that the large number of modes supported by the disk
is essentially a sufficiently complete set to build up the
cylindrical wave assumed in eq 2, similar to the notion in
standard optics that increasingly big objects have increasingly
complex mode structures yet ultimately can be described
increasingly well by simple ray optics arguments.

■ CONCLUSION
To conclude, we have reported a comprehensive study of
plasmonic patch antennas in which we have shown a strong
excitation position dependence of the angle-integrated
cathodoluminescence, as well as the dependence of directivity
on antenna size, wavelength, and driving position. As well,
explained by an analytical model, patch antennas in the typical
size regime for directional emission support a large number of
overlapping modes of different angular and radial quantum
numbers. For a dipole point source located in the MIM gap, the
LDOS we find from full-wave simulations matches very well the
analytical model based only on the symmetric MIM mode. We
find that the CL maps, while qualitatively similar, quantitatively
deviate, pointing to the fact that CL does not solely excite the
MIM mode. Angular radiation patterns measured for central
excitation and on a resonance present strongly directional
doughnut beams, exactly as expected from symmetry and as was
predicted but not observed in previous reports.18 Moreover,
our observations show that even incoherently and indirectly
excited luminescence couples out in a directional fashion,
without the beam pattern minimum exactly in the normal
direction. Finally, the beam directivity and beam steering as a
function of incident power is well explained without taking the
mode structure into account at all, simply viewing the circular
boundary as an outcoupler for the cylindrical MIM wave
launched by the CL excitation.

■ METHODS
Disk Modes and LDOS. In order to calculate the

eigenfrequencies of the patch antennas, we follow the
separation of variables ansatz,23 in which the eigenmodes can
be written as

= ϕE r z a z J k r( , ) ( ) ( )ez
m

m
im

MIM (3)

Here a(z) is the transverse mode profile obtained by solving for
the infinitely extended MIM system, Jm is a Bessel function of
the first kind, and kMIM = kMIM′ + ikMIM″ is the wavevector of
the symmetric MIM mode, again found from the infinitely
extended system. Next, to find a discrete set of eigenfrequen-
cies, one needs to define a boundary condition. For instance,

requiring Ez
m(r = ρn,m, Z) = 0 as boundary condition would yield

resonant disk radii ρn,m as the roots of the Bessel function
kMIMρn,m = xn(Jm). The mode numbers n and m correspond to
radial and axial mode numbers, respectively. In fact, rather than
taking as boundary condition Ez

m(r = ρn,m, Z) = 0, an
accumulated phase ϕm upon reflection of the SPPs from the
antenna edges can be translated into a correction in the
resonant radii calculation as

φ′ + =k R x J2 2 ( )m n mMIM (4)

where R = d/2 is the physical radius of the disk. It has been
shown that this formulation excellently describes the modes of
simple metal disks, with a reflection phase ϕ that is disk size
and frequency insensitive and can be calculated independently
from simulation of reflection of the guided mode at a semi-
infinite flat edge.23

For a given disk size, this procedure yields eigenfrequencies
ωn,m through inversion of the dispersion relation for all available
mode numbers. Expanded in terms of eigenmodes, the local
density of modes probed by a z-oriented dipole for a lossless
system reads

∑ω δ ω ω∝ | | −N r E r( , ) ( ) ( )
n m

z
n m

n m
,

, 2 2
,

2

(5)

where the mode functions are understood to be normalized. In
order to obtain a continuous LDOS spectrum, it is important to
realize that each mode suffers a frequency broadening, which
we assign according to the damping of the modes due to ohmic
and radiation losses. In particular, we sum

∑ω ω ω γ∝ | |N r E r( , ) ( ) ( ; , )
n m

z
n m

n m
,

, 2
,

(6)

where (ω; ωn,m, γ) denotes a Lorentzian (normalized to
constant integral) centered at ωn,m and with full width at half-
maximum γ. It should be noted that in this procedure the only
adjustable parameters are the reflection phase ϕ and the line
width γ. The effect of changing the phase is to shift the entire
structure of the resonance in frequency. For our calculations,
the accumulated phase ϕm = −1.7 and the empirical resonance
line width23 γ/ω = (2kMIM″ R)2 + γ0(1 + ωnorm

b )−1 with γ0 = 0.1, b
= 1.7, and normalized frequency ωnorm = ω/(1000 THz) are
extracted from a COMSOL simulation (see below) by
matching the resonance position and width of the fundamental
mode.

COMSOL Simulation. In COMSOL we calculate the
LDOS in the patch antenna by modeling a vertically oriented
dipole source located in the silica spacer as a small (nanometer-
long) current-carrying wire placed at mid-height in the gap. We
record the power it emits into the environment that
subsequently is dissipated in the metal, as well as the power
it emits that is radiated into the far field. We have used the
optical constants for gold of Johnson and Christy25 as
parametrized by Etchegoin36 and performed a parametric
sweep over 150 frequency points and 33 (31) dipole positions
for a 0.6 μm (0.8 μm) disk size. The calculation time per point
was approximately 2 min on a 2.0 GHz Intel Xeon E5-2620,
where we have used mirror symmetry to reduce the
computation volume to a half-space. Mapping Purcell factor
versus frequency and radial position at just one height and
dipole orientation thus takes over 6 days.

Sample Fabrication. Figure 1a schematically shows the
geometrical structure of patch antennas used in our experiment.
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The antennas are fabricated by first evaporating a 200 nm thick
layer of gold on top of a glass substrate. This layer is optically
thick. Next, a layer of positive-tone resist (ZEP520A) is spin-
coated over the gold film, and circular patches are written in the
resist using electron beam lithography. After developing the
resist, circular disks are formed by evaporating a 50 nm thick
layer of silica (SiOx where x ≈ 2) followed by a 20 nm thick
layer of gold at a rate of 0.5 nm/s and at an ambient pressure of
10−6 mbar. In order to enhance the adhesion of the gold layer
to the silica, the sample is treated by an argon plasma before the
gold layer is deposited. Finally, the resist is removed in a 65 °C
hot bath of 1-methyl-2-pyrrolidinone (NMP) lift-off solvent.
Before performing the measurements, the sample is cleaned
with a mild O2 plasma descum to remove any organic residues.
Figure 1b shows a scanning electron micrograph of a fabricated
patch antenna. Several patch antennas with disk diameters
between 0.6 and 2.8 μm are fabricated on one sample.
Experimental Setup. In order to investigate the resonant

modes of the patch antennas, we use ARCIS.21,22 A 30 keV
electron beam is scanned over a selected patch antenna in steps
of 10 nm at a beam current of 0.8 nA. As reviewed by refs 34,
37, and 38, the high-energy electron beam as it approaches the
metallic and dielectric interfaces of the antenna induces a
vertical transient dipole moment, which locally excites the
optical modes of the patch antenna. A part of the excited
electric field may directly radiate into the far field, while another
part funnels into the MIM mode and subsequently scatters out
of the antenna edges into the far field. The overall radiated CL
is then collected by a parabolic mirror that has a total collection
angle of 1.46π sr. The light is guided to a spectrometer with a Si
CCD detector or an imaging CCD detector for Fourier
analysis, from which the angular radiation pattern can be
obtained.21
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