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ABSTRACT

We determine the plasmon dispersion relation in coaxial waveguides composed of a circular channel separating a metallic core and cladding.
Optical transmission measurements are performed on isolated coaxial nanoapertures fabricated on a Ag film using focused ion-beam lithography.
The dispersion depends strongly on the dielectric material and layer thickness. Our experimental results agree well with an analytical model
for plasmon dispersion in coaxial waveguides. We observe large phase shifts at reflection from the end facets of the coaxial cavity, which
strongly affect the waveguide resonances and can be tuned by changing the coax geometry, composition, and surrounding dielectric index,
enabling coaxial cavities with ultrasmall mode volumes.

In only a few years time the rapidly growing field of
plasmonics has generated a large array of new nanophotonic
concepts and applications. The ability of metal nanostructures
to localize light to subwavelength volumes1-3 has provided
opportunities for, e.g., sensing applications4 and nanoscale
optical lithography.5,6 Plasmonics also provides a way to
finely tailor the dispersion relation of light, giving the ability
to shrink the wavelength of light down to only a few tens of
nanometers at optical frequencies,7 or create materials with
negative index of refraction.8 Possible applications where
precise control of the optical dispersion is essential range
from true-nanoscale optical components for integration on
semiconductor chips to lenses for subwavelength imaging8,9

and invisibility cloaks.10,11

Recently, coaxial plasmon waveguides with a circular
dielectric channel separating a metallic core and cladding,
have received a great deal of attention in connection to
observed enhanced transmission from two-dimensional arrays
of coaxial nanoapertures at infrared wavelengths.12-14 The
transmission enhancements have been ascribed to standing
optical waves along the axis of the coaxial apertures.15-17

Past studies have been limited to short (<200 nm) coaxial
channels, allowing observation only of the lowest order
resonances.12-14 Furthermore, optical transmission has only
been measured for arrays of coaxial waveguides, making it
hard to separate transmission enhancements owing to channel

resonances from enhancements related to collective reso-
nances of the array.12-14,18 To investigate the optical reso-
nances of coaxial waveguides in detail, measurements on
single coaxial nanostructures are necessary. Furthermore, a
systematic study is needed of the phase shifts upon reflection
from the waveguide ends, as they strongly affect the
resonances of a short waveguide.

Here, we report optical transmission measurements of
isolated coaxial plasmon waveguides in Ag with systemati-
cally varied lengths in the range 265-485 nm. By variation
of the channel length, the dispersion relation for these
structures was determined for the first time. The experimental
results agree well with an analytical model for plasmon
dispersion in coaxial waveguides. We observe a significant
enhancement of the wave vector of light when coupled to
coaxial waveguides from free-space, even at frequencies well
below the surface plasmon resonance. It is found that the
phase shift upon reflection off the waveguide ends can be
tuned by changing the waveguide geometry. We anticipate
that the combination of strong optical confinement and
relatively low propagation loss make coaxial waveguides
very promising as nanoscale optical components.

The plasmon dispersion in coaxial waveguides was
determined from transmission measurements of isolated
coaxial channels prepared using focused ion beam (FIB)
milling on films of Ag. Ag was deposited by thermal
evaporation on quartz substrates. The Ag thickness was
varied between 265 and 485 nm in 20 nm increments using
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a shutter. We fabricated coaxial waveguides by FIB milling
20-100 nm wide circular channels through the Ag layer.
Figure 1 shows scanning electron microscope (SEM) images
of 485 nm long coaxial channels with an outer radius of
∼175 nm and channel widths of ∼100 nm (a) and ∼50 nm
(b). The main panels in Figure 1 were taken at a 55° angle
with respect to the sample normal after a cross section was
made using FIB milling. The images display a small degree
of tapering of the channels (∼7° taper angle), which is mainly
caused by redeposition of Ag in the waveguide during FIB
milling, an effect that becomes more pronounced deeper in
the Ag layer. The insets in Figure 1 are top-view SEM
images of the coaxial channels that show excellent uniformity
of the channel radii and width. Coaxial channels were
separated by 50 µm to avoid coupling between waveguides.

To investigate the influence of channel length and width
on the optical response of coaxial waveguides, we performed
optical transmission measurements. Radiation from a super-
continuum white light source was focused onto individual
coax structures using a 0.95 NA objective. The transmitted
light was collected by a 0.7 NA objective and directed into
a spectrometer equipped with CCD detector to measure
optical spectra. For reference, we measured transmission
spectra of 10 × 10 µm open squares in which the Ag layer
had been completely removed by FIB milling. Figure 2
shows transmission spectra of a 100 nm wide, 485 nm long
coax channel (I) and of a reference area close to the
waveguide (I0). The transmittance spectrum (T ) I/I0) is
obtained by normalizing the waveguide transmission to the
reference spectrum and is also shown in the figure. Three
distinct maxima can be resolved in the transmittance spec-
trum, at ∼450, ∼600, and >820 nm, which we attribute to
Fabry-Perot cavity resonances of the coaxial waveguide.
To corroborate this hypothesis, we have measured the
transmittance of a series of coaxial waveguides of equal
channel width but varying channel lengths.

Figure 3 shows transmittance spectra of 100 nm wide
coaxial channels with length decreasing from 485 nm (same
data as in Figure 2) to 265 nm in 20 nm increments. Several
features are observed. First, the resonance at 600 nm for the
longest waveguide gradually blue shifts to 450 nm for the
shortest waveguide. Also, the resonance at 450 nm, observed

for the largest channel length, blue shifts to a wavelength
below 400 nm for waveguides shorter than 400 nm. The
broad peak in the long-wavelength range of the spectra also
blue shifts as the length of the cavity is decreased, showing
a main peak at a wavelength of 650 nm for the shortest
waveguides. Furthermore, the lowest-order resonances ob-
served in the three shortest waveguides appear to be much
broader than other resonances. This is possibly the result of
a longer-wavelength resonance that arises when all propagat-
ing modes in the resonator are in cutoff.18

Fabry-Pérot resonances result from interference between
forward and backward propagating plasmon waves in the
cavity. On resonance, the condition

Figure 1. SEM images of the cross-sectional profile of coaxial
plasmon waveguides with lengths of 485 nm, dielectric channel
widths of ∼100 nm (a) and ∼50 nm (b), and outer radii of ∼175
nm. The insets show top-view SEM images of the waveguides
before cross sectioning. Scale bars are 100 nm.

Figure 2. Transmission measurement (red dotted spectrum, I
multiplied by 100) of a coaxial waveguide with ∼100 nm wide
dielectric channel and length of 485 nm (see Figure 1b) and a
reference spectrum (blue dashed line, I0). The transmittance defined
as the waveguide transmission spectrum divided by the reference
spectrum is depicted by the green curve (green drawn line, T).

Figure 3. Transmittance spectra of coaxial waveguides with varying
lengths. The outer radius and channel width were ∼175 and ∼100
nm, respectively, while the waveguide length was decreased from
485 nm (top curve) to 265 nm (bottom curve) in increments of 20
nm. Data are shifted vertically for clarity. The black dashed lines
are guides for the eye and connect the resonance peaks (m ) 1-3).
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must be fulfilled, with L the length of the waveguide, kSPP(ω)
the wave vector of the plasmon at frequency ω, ∆φ1,2 the
phase shifts as a result of plasmon reflection at either end of
the waveguide, and m the mode number.

Before we can determine the plasmon dispersion in coaxial
waveguides, it is necessary to assign mode numbers to the
measured Fabry-Pérot resonances. With this in mind, we
performed exact calculations of kSPP(ω) by solving Maxwell’s
equations for a cylindrical structure of infinite length.15,16,19-21

The azimuthal dependence of the electric and magnetic fields
in the waveguide is described by the harmonic function einψ

of order n. Note, that we expect to only excite modes of
odd azimuthal order in the experiment as the incident electric
field has even parity about the center of the waveguide
aperture. The radial dependence of the fields in all three
domains (Ag-dielectric-Ag) is described by solutions to
the second-order Bessel differential equation. We apply a
Bessel function of the first kind, Jn, to the Ag core and a
Hankel function of the first kind, Hn

(1), to the Ag cladding.
Inside the dielectric channel the radial field dependence is
described by a linear combination of Bessel and Hankel
functions of the first kind. On each domain boundary we
formulate four continuity conditions for the tangential
components of the electric and magnetic fields. The optical
eigenmodes of the coaxial waveguide are found when the
determinant of the resulting homogeneous system of eight
equations with eight unknown coefficients vanishes.

In this way dispersion relations were determined for
waveguides of any chosen channel width. To account for
the tapered profile of the resonators in the experiment, we
calculated the effective dispersion relation by index-averaging
kSPP(ω) over a series of dispersion curves corresponding to
the varying lateral dimensions of the waveguide determined
from SEM images (Figure 1). By inserting this index-
averaged dispersion into eq 1, we obtain the resonance
frequency as function of cavity length and mode number m.
We compared these results to experimental values of the
resonance frequency, obtained by fitting the transmittance
spectra with Lorentzian line shapes, as a function of
waveguide length. This comparison makes it possible to
assign mode numbers to the measured resonances and
construct the plasmon dispersion relation for the coaxial
waveguides. In the following first analysis we assume that
the plasmon phase shift upon reflection at the cavity ends,
which will be discussed further on, is zero.

Figure 4a shows the dispersion data for coaxial channels
with an average outer diameter of ∼175 nm and ∼50 nm
wide air channel (see Figure 1b) along with the calculated
dispersion curve for azimuthal order n ) 1, taking into
account the tapering in the structures as determined from
SEM data (Figure 1). Good agreement between experiment
and calculations is observed. Different symbols indicate
measured resonances characterized by mode numbers, m )
1 and 2. Dispersion in air and at a Ag/air interface are plotted
for reference. The figure shows up to ∼60% larger wave
vectors in coaxial waveguides compared to free space. At

lower frequencies (ω < 2.5 × 1015 rad/s), as the mode
approaches cutoff, the calculated dispersion relation flattens
slightly and crosses the air light line, in agreement with
experimental data in that frequency range. This behavior is
not observed in studies of cylindrical metal waveguides when
the excited plasmon mode has azimuthal symmetry (n )
0),22,23 as that mode does not experience cutoff.

To further increase the dispersion, we infilled the coaxial
nanostructures by spin-coating the sample with a ∼200 nm
thick layer of spin-on-glass (SOG, n ) 1.46). SEM of FIB-
milled cross sections confirmed that SOG infilled the
structures entirely. Figure 4b shows the dispersion data for
infilled coaxial waveguides of the same dimensions as in
(a). In this case resonances with mode numbers m ) 2-4
were observed. We further note a shift of the dispersion data
to higher wavenumbers compared to the air case of Figure
4a, as well as a clear increase in the curvature of the
dispersion relation. In this case we observe up to ∼2.2 times
larger wave vectors in coaxial waveguides compared to free
space. Figure 4b also shows the calculated plasmon disper-
sion (red drawn curve).

Thus far we have demonstrated cases where the calculated
dispersion relations match the experimental data quite well.
Figure 5a compares the dispersion data (assuming zero phase
change on reflection) and calculated dispersion relation (red
drawn curve) for air-filled waveguides with a dielectric
channel width of ∼100 nm. Although the data follow the
same general trend as the calculated curve, the two show a

|2LkSPP(ω) + ∆φ1 + ∆φ2| ) 2πm (1)

Figure 4. Measured dispersion data and calculated index-averaged
dispersion relations (red drawn lines) for coaxial plasmon waveguides
with (a) ∼50 nm wide air channel and (b) ∼50 nm wide spin-on-
glass (SOG) filled channel. Light lines for air (a) and SOG (b) are
also shown (dotted green lines), along with the plasmon dispersion
(dashed orange curves) at a flat Ag/air interface (a) and Ag/SOG
interface (b). Symbols in the figure correspond to different
Fabry-Pérot mode numbers, m, where 0 ) 1,* ) 2, 4 ) 3, and
O ) 4. The inset in (a) shows the calculated electric field
distribution of the mode of azimuthal order n ) 1, in an SOG-
filled coaxial waveguide with outer radius of 200 nm and channel
width of 100 nm at ω ) 3.5 × 1015 rad/s.
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clear offset in wavenumber with respect to each other. In
the final part of this Letter we will show that the observed
discrepancy between the data and theory results from a net
phase shift (∆φ1 + ∆φ2) that the plasmons gain when they
reflect off the cavity ends, which can be tuned by changing
the cavity geometry.

As eq 1 shows, a nonzero net phase shift causes the
resonance wavelengths to shift. To study the phase shift, we
have performed finite difference time domain (FDTD)
simulations to obtain the field profile in structures similar to
those used in the experiment. In the simulations we used a
broad band optical pulse with Gaussian beam profile to excite
the structures. By applying a discrete Fourier transform of
the time-dependent fields, we obtain the spatial field intensity
profiles at any given optical frequency. In Figure 6 we show
the simulation results for an air-filled coaxial waveguide of
the same dimensions as the structure shown in Figure 1a
excited at an angular frequency of 4.2 × 1015 rad/s (free-
space wavelength of 450 nm). Figure 6a shows the steady-
state intensity distribution in the plane of polarization for
the electric field component that is parallel to the polarization
direction of the incident light. As in the experiment the
waveguide is excited at the air-side (left-side in the figure).

In the steady state, the field profile in the cavity is a
superposition of plasmon waves propagating in forward and
backward direction after any number of reflections at the
input or distal end of the cavity. The analytical expression
of the resulting electric field in the cavity as a function of

position in the direction parallel to the waveguide axis, is
given by

where k is the plasmon wave vector (which depends on z as
a result of waveguide tapering), 〈k〉 is the index-averaged
wave vector, and |r1| and ∆φ1 are the reflectance and
reflection phase shift at the distal end of the cavity,
respectively. Note, that the field profile inside the cavity is
not affected by the reflectivity of the input end of the
waveguide. In fact, the field profile is simply proportional
to the original plasmon wave and the plasmon wave after
one reflection, added together.

Figure 6b plots the intensity distribution in the cavity as
a function of position along the waveguide axis (blue dotted
curve), obtained by vertically summing the intensity values
in Figure 6a. To obtain the phase shift at the distal end of
the waveguide (right end in Figure 6a), we fit the intensity
distribution with |E(z)|2 (eq 2). As the plasmon wave vector
is calculated analytically, the only fit parameters, besides an

Figure 5. Measured dispersion data and calculated index-
averaged dispersion relations (red drawn lines) for coaxial
plasmon waveguides with a 100 nm wide air channel. In (a) the
dispersion data are plotted, assuming a zero net phase shift as
result of reflections at the end facets of the cavity. In (b) the
data are plotted for an overall reflection phase shift of 0.77π
which was determined using simulations. Light lines for air are
also shown (dotted green lines), along with the plasmon
dispersion (dashed orange curves) at a flat Ag/air interface.
Symbols in the figure correspond to different Fabry-Pérot mode
numbers, m, where 0 ) 1, * ) 2, and 4 ) 3.

Figure 6. Steady-state simulation results of the electric field
intensity profile inside a 485 nm long coaxial cavity with an air-
filled ∼100 nm wide dielectric channel excited at an angular
frequency of 4.2 × 1015 rad/s (free-space wavelength of 450 nm).
(a) Electric field intensity distribution inside the coaxial cavity for
light incident from the left. (b, c) Intensity as a function of position
integrated along the lateral direction (dotted lines) for light incident
from the left (b) and right (c). The red drawn curves are fits of the
intensity profile that were used to find the reflectance and reflection
phase shifts at the distal end facets. The reflection phase shift is
1.0π at the substrate side and -0.12π at the air side of the cavity,
while the values for the reflectance are 75% and 20%, respectively.

E(z) ∝ eikz + |r1|ei(k(L-z)+〈k〉L+∆φ1) (2)

Nano Lett., Vol. 9, No. 8, 2009 2835
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amplitude constant, are ∆φ1 and |r1|. The result of the fit is
plotted in Figure 6b (red drawn curve). From the fit it follows
that the phase shift as result of the reflection at the substrate
end of the waveguide is close to π. The visibility of the
oscillation depends on the reflectance |r1| at the distal cavity
end. On the basis of the fit we find that the reflectance of
the substrate-side end facet is equal to 75%.

To obtain the reflection phase shift at the input end facet,
∆φ2, the intensity distribution in the waveguide was simu-
lated for light impinging on the nanostructure from the
substrate side of the cavity. We show the result of this
simulation in Figure 6c. Owing to a lower reflectance of the
air-side end facet of 20%, the visibility of the intensity
distribution is smaller. Furthermore we find that the phase
shift upon reflection at the air-side cavity end is close to
zero. Using the reflectance values as determined from the
fits and the calculated waveguide losses, we obtain a cavity
quality factor of only ∼4, which explains the broad spectral
width of resonances in measured spectra. We note however,
that the cavity losses are almost entirely due to the rather
poorly reflecting end facets of the cavity. By improving the
end face reflectivity, it should be possible to attain quality
factors of more than 80. Furthermore, on the basis of
comparisons with simulations of untapered waveguides, it
is important to note that waveguide tapering does not
significantly affect the end facet reflectance and, as a result,
does not add to the resonance line width. However, tapering
does result in a larger dielectric channel width at the input
side of the cavity, which, as shown, may give rise to lower
end facet reflectance, resulting in a reduction of the quality
factor of the cavity.

The analysis in Figure 6 was done at a frequency of 4.2
× 1015 rad/s (free-space wavelength of 450 nm). At lower
frequencies, we find that the overall phase shift tends to
decrease (data not shown). The average net phase shift we
find for frequencies within the experimental bandwidth equals
∼0.77π. In Figure 5b we plot the dispersion relation taking
into account this average phase shift and observe a close
agreement between theory and experiment. Note, that in our
analysis of waveguides with a ∼50 nm wide dielectric
channel (Figure 4) or waveguides filled with SOG, best
agreement between experiment and theory was found for
phase shifts close to zero, demonstrating that the phase shifts
on reflection can be tuned by changing the geometry.

To further investigate the tunability of the reflection
coefficients of the coaxial end facets, we simulate the
response of waveguides as we vary the refractive index of
the dielectric channel and surrounding medium. The simula-
tions are performed using untapered waveguides of 485 nm
length and 175 nm outer radius, that are composed of a 75
nm wide dielectric channel separating a Ag core and
cladding.

Figure 7 shows the reflectance |r1| and reflection phase
∆φ1 obtained by fitting the longitudinal field intensity profile
using eq 2 for a waveguide with Ag core and cladding and
dielectric channel at λ0 ) 800 nm. In Figure 7a the refractive
index of the dielectric channel is kept fixed at nin ) 1.5 while
the refractive index of the surrounding medium is varied from

1.0 to 3.5. The data demonstrate that the reflection phase
depends strongly on the surrounding index and can be tuned
to any value between 0 and π. It is worthwhile to note that
the observed trend qualitatively agrees with the trend given
by a calculation using the Fresnel equations (blue dotted line)
using the mode index of the cavity. Quantitatively however,
the trend observed for coaxes is very different, and may only
be obtained analytically if we consider mode overlap between
waveguide modes, surface waves, and free-space modes.
Interestingly, a change in the refractive index of the
surrounding medium hardly affects the end facet reflectance
of ∼70%.

Figure 7b shows the influence of a change in the dielectric
channel index on the reflection coefficients of the coaxial
waveguide when the refractive index of the surrounding
medium is fixed at nout ) 1.0. As the refractive index of the
dielectric in the coaxial waveguide is increased from 1.0 to
2.5, we find that the end fact reflectance increases from
∼55% to ∼85%, while the phase shift on reflection off the
cavity ends remains at a value of ∼0.1π. In general, we find
that an increase of the effective mode index of the waveguide
either by a change in the refractive index of the dielectric or
by a change in the geometry leads to an improved cavity
end reflectance.

Figure 7 demonstrates that the reflection phase and
reflectance of the cavity end facets can be independently
tuned. This opens the way to realization of plasmonic cavities

Figure 7. Reflection phase (∆φ) and reflectance (|r|) of the end
facets of an untapered coaxial waveguide with 75 nm wide dielectric
channel and outer radius of 175 nm at a wavelength λ0 ) 800 nm
derived from finite difference time domain simulations. (a) ∆φ and
|r| are plotted as a function of the surrounding dielectric index for
waveguides with fixed dielectric channel index, nin ) 1.5. The
dotted blue line gives the result obtained from Fresnel equations
using the (single) mode index of the coaxial cavity. (b) Plot of ∆φ
and |r| as a function of the refractive index of the dielectric channel
of the coaxial waveguide, while the surrounding dielectric index is
kept fixed, nout ) 1.0.

2836 Nano Lett., Vol. 9, No. 8, 2009

D
ow

nl
oa

de
d 

by
 F

O
M

 I
N

ST
IT

U
U

T
 V

O
O

R
 A

T
O

O
M

 E
N

 o
n 

Se
pt

em
be

r 
26

, 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 J

ul
y 

15
, 2

00
9 

| d
oi

: 1
0.

10
21

/n
l9

00
59

7z



with ultrasmall mode volumes, where the reflection phase
can effectively cancel the phase accumulated during propa-
gation in the coaxial waveguide,24 enabling cavities with a
length considerably shorter than λ/2. The quality factor of
the cavity is mainly dependent on the reflectance of the cavity
mirrors, which, as we have shown, can be improved by
increasing the effective index inside the coax, for instance
by reducing the dielectric channel width in the cavity.
Counterintuitively, a reduction in channel width may thus
give rise to a smaller mode volume as well as a greater
quality factor.

In conclusion, we have shown that the plasmon dispersion
in coaxial waveguides with subwavelength dimensions can
be determined from single-cavity transmission measurements.
Our dispersion data agree well with an analytical model for
dispersion in coaxial waveguides of infinite length and
demonstrate the large degree of tunability by varying the
coaxial cavity dimensions and dielectric medium. A plasmon
phase shift up to π occurs upon reflection off the cavity ends
and strongly affects the cavity resonance. The phase shift
depends greatly on the waveguide geometry and dielectric
medium inside and outside the cavity, providing further
tunability of the coaxial cavity resonances and enabling
cavities with ultrasmall mode volumes. The fundamental
insights obtained in this paper are important in further studies
of nanoscale waveguiding, field enhancement, and imaging
with coaxial cavities, as well as their use in negative-index
metamaterials.
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