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A B S T R A C T

We demonstrate enhanced efficiencies in front-contacted silicon heterojunction (SHJ) solar cells using silver
nanowire-based hybrid electrodes. SHJ cells typically suffer from shading losses due to reflection from
macroscopic sun-facing metal fingers, which must be closely spaced to avoid resistive losses in the transparent
conductive electrode (TCE). Using substrate conformal imprint lithography (SCIL) we fabricate silver nanowire
electrodes on practical scale (4.0 cm2) planar SHJ cells. These electrodes exhibit anomalous transmission and a
7-fold improvement in sheet conductance relative to a standard ITO layer, enabling larger finger spacings and
reducing reflection losses without compromising the cell fill factor. Over 70% of the ITO is replaced with
transparent SiNx, reducing the use of indium while improving the anti-reflective performance. Combined, the
reduced shading and reflection raises the short circuit current density increases by 2.1 mA cm−2, yielding an
absolute increase in cell efficiency of 1.0%. These engineered hybrid electrodes provide a practical pathway
towards front-contacted SHJ cells with a reduced dependence on rare metals and high efficiencies.

1. Introduction

Transparent conductive electrodes (TCEs), which ideally offer
simultaneously high broadband transmission and low electrical resis-
tance, are a key element in many optoelectronic devices [1] including
display panels, organic light-emitting diodes, and solar cells. Currently,
most devices rely on indium tin oxide (ITO) as a transparent conductor.
However, after decades of optimization ITO has reached fundamental
limits which specify an inherent tradeoff between optical and electrical
performance [2,3]. Combined with expensive and unpredictable in-
dium supplies [4,5] and fragility [6], there is a significant effort
underway to develop next-generation electrodes with improved trans-
parency and conductivity [7]. Numerous alternatives have been
suggested [4,5], with metal nanowire networks among the leading
candidates due to the high conductivity of metal. Initial demonstrations
have been performed using a variety of fabrication methods, including
chemical synthesis [8–14], electrospinning [11,15,16], lithographic
patterning [17,18] and, more recently, nanoimprinting networks
[19–21]. While these approaches have shown promise, the controlled
fabrication of nanostructured electrodes over large areas with the size
of practical solar cells has so far proved elusive.

The need for improved TCEs is particularly acute for solar cells
based on a silicon heterojunction (SHJ), where a crystalline Si absorber

is passivated by thin amorphous Si layers (Fig. 1a). These solar cells
have attracted significant interest due to their record-setting voltage
and efficiency [22–25], environmentally friendly processing, and ease
of fabrication [23,26]. However, poor lateral conductivity in the doped
a-Si:H layer requires the addition of a TCE to transport the high
current produced by these cells without large losses. Typically ITO, this
thin layer is optimized in thickness to act as a single-layer anti-
reflection coating (ARC, ~80 nm). This thickness constraint results in
limited conductivity, which then necessitates additional macroscopic
metal ‘fingers’ to harvest the photogenerated electrons. Due to their
width (typically > 80 µm), these fingers reflect sunlight, shading por-
tions of the solar cell and causing a significant reduction in both
current and cell efficiency [27,28]. The maximum allowed spacing
between these fingers is strongly influenced by the resistance of the
TCE [29,30], forging a direct relationship between TCE performance
and cell efficiency.

Here, we demonstrate a large-area nanostructured hybrid TCE
comprised of encapsulated Ag nanowires, which significantly exceeds
ITO in conductivity with equivalent transparency, and replaces the
monolithic ITO layer on a front-contacted and industrially-processed
SHJ cell (Fig. 1a-d). This approach decouples, to a large extent, the
optical and electrical properties of a TCE and enables the independent
optimization of each functionality. In the new design, conduction in the
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electrode is primarily provided by the nanowire network, which is
fabricated on an ultrathin ITO layer to provide controlled charge
transport within the μm-scale interstitial regions. Plasmonic anom-
alous optical transmission, where the optical transmission is larger
than expected considering the geometrical areas shaded/covered by the
Ag-NW network, enables broadband transparency [18,31]. Separately,
the single layer anti-reflection minimum is specified by a thin coating of
silicon nitride that also serves as a protective encapsulant for the Ag
nanowires (Fig. 1c-d). We apply this hybrid electrode to 4.0 cm2 planar
heterojunction solar cells, and demonstrate an absolute efficiency
enhancement of 1.0% relative to reference cells with a standard
80 nm ITO layer and 2 mm finger spacing.

2. Results and discussion

2.1. Solar cell and hybrid electrode fabrication

The layout of the SHJ cells studied in this work are shown
schematically in Fig. 1a. Briefly, a crystalline Si wafer (grey) is bifacially
passivated with thin (~5 nm) intrinsic a-Si:H layers (green), with the
front-surface heterojunction and the back-surface field formed using
highly doped a-Si:H layers (orange). The cell is contacted on the front
with a TCE (ITO, nanowire-enhanced ITO, or a nanowire hybrid
(Fig. 1b-d)) and macroscale metallization, and on the rear with a
conductive mirror.

Cell fabrication was conducted in two steps: the production of
5.5×5.5 cm2 SHJ semicells, followed by deposition of a TCE (see
Methods: nanowire network fabrication on SHJ semicells). The semi-

cells, which were pre-metallization SHJ cells with either 80 nm or
22 nm of ITO on the front surface, were prepared using industrial
equipment and processing techniques. Next, three nanowire network
designs with different pitches (1, 2, and 4 µm, each covering
2.0×2.0 cm2) were patterned into a sol-gel/PMMA bilayer using
substrate-conformal imprint lithography (SCIL), which is a fast, high
resolution, and dust-tolerant nanoimprint technique based on a soft
polymer stamp [32,33]. After the SCIL imprint, a subsequent evapora-
tion and liftoff produced complete Ag nanowire networks with a
geometry dictated by the stamp. For the semicells with the thin
(22 nm) ITO layer, the hybrid electrode was completed via encapsula-
tion of the nanowires within a 62 nm layer of SiNx to protect against
oxidation and serve as a single layer ARC. After completion, the four
cell designs (three nanowire-based cells and a wire-free reference) were
laser-cut into 2.5×2.5 cm2 cells, leaving sufficient space around the
nanowire networks to enable a masked measurement without the
influence of edge recombination [34].

The completed Ag nanowire grids (2.0×2.0 cm2) were free of visible
defects, and exhibited uniform nanowire dimensions across all net-
works. Representative SEM images of networks with pitches of 1, 2,
and 4 µm are shown in Fig. 1e-f, respectively, with wire widths on all
samples measured to be 80 ± 5 nm. An AFM cross section of the
networks shows a wire height of 120 nm (Fig. 1e, inset).

2.2. Network conductivity

To directly measure their electrical sheet resistance, nanowire
networks identical to those on the SHJ cells were fabricated on
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Fig. 1. Front-contacted planar silicon heterojunction (SHJ) solar cells. a, Schematic illustration of the HIT cells used in this work. b, The standard transparent conductive
electrode (TCE) for SHJ cells, fabricated using 80 nm of indium-tin oxide (ITO) to serve as an ARC. c, ITO electrode/ARC modified with a conductive Ag nanowire (NW) grid. d, Hybrid
electrode comprised of 22 nm of ITO for micron-scale conduction, a NW grid for cm-scale conduction, and an encapsulating SiNx ARC (62 nm). e-f, Scanning electron micrographs
showing representative areas of fabricated NW grids with pitches of 1, 2, and 4 µm. Inset: AFM cross section of 1 µm pitch NWs. The shared scale bar for all images is 1 µm.
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nonconductive glass substrates. For the ITO, films were simultaneously
deposited on reference SHJ cells where the depletion region formed an
insulating barrier, enabling measurement of only the ITO sheet
resistance. Both the nanowire networks and ITO films were character-
ized using 4-point probe measurements (see Methods: electrical
characterization).

The measured sheet resistances are listed in Table 1, with the
nanowire networks showing an order of magnitude improvement
relative to the standard ITO film. The 80 nm ITO layer measured
110 Ω/sq, a sheet resistance resulting from the combined effects of the
ARC thickness constraint, fundamental constraints (transparency
requires relatively low free carrier densities) [2,5], and carrier mobility
limitations resulting from the industrial sputtering method. This sheet
resistance is quite close to an optimized sheet resistance of 100 Ω/sq;
while higher conductivity ITO may be fabricated, in the range of 40–80
Ω/sq, the increased conduction does not compensate for the current
lost due to parasitic absorption [3]. The thin ITO layer (22 nm) showed
an increased sheet resistance of 260 Ω/sq, a lesser increase than the
four-fold increase expected from reducing the thickness of a uniform
film. This suggests the sputtering process used for film deposition
results in depth- or thickness-dependent ITO properties.

In stark contrast to the relatively high sheet resistance of the
reference ITO, the nanowire networks measured only 4.0, 7.2, and
15.0 Ω/sq for 1, 2, and 4 µm pitched networks, respectively (Table 1).
The measured doubling of sheet resistance with pitch is expected from
the analytical description of resistance in a large 2D network of
nanowires: R ρL A= /S , where ρ is the conductivity, L is the network
pitch, and A is the cross sectional area of the wire [19]. Using the
measured nanowire dimensions for A, assuming the bulk value of ρAg,
and neglecting interfacial effects this model gives Rs of 1.6, 3.3, and
6.6 Ω/sq for the experimental pitches (Table 1, in parentheses). From
these, we calculate an effective resistivity of only ρeff≈2.3×ρAg, which is
a marked improvement over the previously reported value of ~5.7 for
lithographically defined networks [18] and results from improved
metallization conditions which produce larger crystalline grains. The
remaining difference between ρeff and ρAg is attributed to grain
boundary and surface scattering [35], in situ oxidation during deposi-
tion, and the formation of a thin environmental surface oxide that
reduces the volume of conductive metal.

The high degree of uniformity of these networks ensures that charge
carriers will experience the ‘local’ sheet resistance of the thin residual
ITO layer within the interstitial regions of the networks (1–4 µm), and
then the reduced ‘global’ sheet resistance of the nanowire network over
longer distances. This uniformity is a key advantage of nanofabrication,
which can create networks with a degree of local optimization (µm to
cm-scale) and uniformity unachievable through chemical synthesis or
electrospinning.

2.3. Solar cells with nanowires on 80 nm thick ITO

First, we show that a more conductive TCE permits an increase in
finger pitch, leading to an increase in Jsc without a corresponding

reduction in FF. This increased conductivity is achieved by applying
nanowire networks to flat SHJ cells with a standard 80 nm ITO layer.
We will then show, in a second geometry, how Ag nanowires enable a
reduction of the ITO layer thickness.

For the flat reference cells, with 80 nm ITO as the TCE, the
influence of finger spacing on Jsc is clearly visible in the IV response
(Fig. 2). With the industry-standard finger spacing (2 mm, red line),
Jsc=32.0 mA cm−2. By increasing the finger spacing to 5 mm, Jsc
increases by 2.7 mA cm−2 to 34.7 mA cm−2 (grey line). This difference
is the direct result of geometric shading, which gives a reduced current

J J t A′ = (1 − ),sc sc (1)

where A is the fractional area covered by metal, and t is an correction
factor to account for transmission through fingers. For opaque,
macroscopic fingers t is unity. The magnitude of the shading loss
(ΔJ=Jsc-Jsc’) depends on finger width and is plotted in Fig. 2a (inset).
The potential improvement in current from an increased finger pitch is
indicated by the shaded region and, for typical finger widths, can range
from 0.5 to 2.2 mA cm−2. For our measured finger width of 185 µm,
ΔJ=2.0 mA cm−2, in agreement with the observed difference in short
circuit current combined with resistive losses.

However, this increase in current comes at the expense of lost fill
factor (FF:0.676 reduced to 0.604) due to increased series resistance.
Given a uniform carrier generation profile, increased finger spacing
causes a linear increase in current transported through the ITO,
increasing J2Rsh losses and decreasing FF. Since cell efficiency
η FFV J P= /oc sc in, the gains in Jsc are countered by the reduction in
FF. This effect is well known: the optimal finger pitch is determined by
Jsc, which depends on finger width and, crucially, the TCE sheet
resistance (Rsh) [29]. By adding nanowires, which can achieve low
values of Rsh relative to ITO (Table 1), we can increase this optimal
finger spacing from 2 mm to 5 mm (Fig. S2).

However, adding Ag nanowires without modifying the ITO thick-
ness can introduce additional parasitic optical loss at the cell surface.
To understand the optical impact of the nanowires on cell efficiency,
the absorption of light in the nanowire-modified cells (which includes

Table 1
Measured sheet resistances for the ITO and NW electrodes. For the NW
electrodes, the sheet resistances calculated from the measured dimensions and con-
ductivity of bulk Ag are listed in parentheses. These measured resistances are plotted
against modeled transmission through the electrode in Fig. S1, where both absorption
and reflection contribute to the reduction in transmission.

Conductive layer Sheet resistance (Ω/sq)

ITO (80 nm) 110 ± 10
ITO (22 nm) 260 ± 10
NW grid (1 µm pitch) 4.0 (1.6)
NW grid (2 µm pitch) 7.2 (3.3)
NW grid (4 µm pitch) 15.0 (6.6)

Fig. 2. Optical shading from fingers. a, Current-voltage response of flat SHJ cells
with an 80 nm layer of ITO (110 Ω/sq) showing the reduction in shading losses as the
finger spacing is increased from 2 mm (red) to 5 mm (grey). Inset: geometrical loss of Jsc
due to finger shading, based on a local current density of 36.0 mA cm−2; the vertical black
line corresponds to the experimental finger width. b, Photographs of fabricated cells with
2 mm and 5 mm finger spacings. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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both carrier generation in the c-Si and parasitic absorption in the other
layers) was determined by measuring reflection spectra in the inter-
stitial regions between fingers (see Section 3.2). These measurements
were correlated with a 3D finite-difference time-domain (FDTD) model
using measured dimensions for the nanowires and thin film layers (ITO
and a-Si:H) as well as measured optical constants.

The experimental and modeled cell absorption spectra show the
dependence of plasmonic scattering and absorption losses on nanowire
pitch (Fig. 3a,b). Without nanowires, the cells show perfect absorption
when the λ/4nITO anti-reflection condition in the ITO ARC is met
(λ=670 nm), while reduced absorption is observed at shorter and
longer wavelengths. The addition of nanowires introduces additional

scattering losses and causes the overall cell absorption to decrease.
However, for the largest network pitch (4 µm), this scattering loss is
only ~4% at the anti-reflection peak. The agreement between the
measured spectra and the FDTD model is remarkable given that the
measurement compares a measured area of ~4 mm2 (~106 nanowires)
to a single idealized unit cell.

In addition to scattering losses, the model enables us to identify
which cell layers are responsible for parasitic absorption (Fig. 3c).
While most of the light is converted to charge carriers within the
crystalline Si (light yellow shaded area), there is significant parasitic
absorption in the doped a-Si:H layer (orange) and the ITO (purple), a
problem common to all front-contacted SHJ cells. For ITO, this

500 600 700 800 900
0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

C
el

l a
bs

or
pt

io
n

500 600 700 800 900
0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

1.00 

300 450 600 750 900 1050
0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

680

700

25

30

35

0.60 

0.64 

0.68 

1 2 4
13

14

15

16

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

C
ur

re
nt

 d
en

si
ty

 (m
A

 c
m

-2
)

V
oc

 (m
V

)
J s

c (
m

A
 c

m
-2
)

FF
E

ffi
ci

en
cy

 (%
)

NW pitch (μm)

d

Voltage (V)

)mn( htgnelevaW)mn( htgnelevaW)mn( htgnelevaW

noitprosb
A

450 750 1050
 0 

 1 

 2 

e

ba
DTDFderusaeM

c
Fractional absorption

noitprosba lle
C σ

 sba
w /

E⊥ E||

80 nm ITO 

1 μm

2 μm

4 μm

5 mm ref

2 mm ref

Fig. 3. Optical and electrical properties of planar SHJ cells with 80 nm ITO and Ag nanowire grids. a,b, Measured and simulated spectra for nanowire grids with pitches
of 1 µm (green), 2 µm (blue) and 4 µm (orange) fabricated on SHJ cells with standard-thickness ITO (80 nm). The reference cell has only ITO and no nanowires (grey). c, Modeled
fractional absorption for a NW network on 80 nm ITO with a 4 µm pitch, with shaded areas indicating useful absorption in the Si (yellow), parasitic absorption in the amorphous Si:H
(orange), parasitic absorption in the ITO (purple), and parasitic absorption in the nanowires (dark grey). The remaining area indicates reflection (blue). Inset: absorption efficiency of an
isolated nanowire on a SHJ cell, calculated for polarization parallel (E||) and perpendicular (E⊥) to the nanowire axis. d, Measured IV response and e, Summarized cell parameters for
SHJ cells with a 5 mm finger spacing and ITO covered with Ag NW networks. Values for the standard reference cell (2 mm finger pitch, 80 nm ITO) are indicated by the dashed black
lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

M.W. Knight et al. Nano Energy 30 (2016) 398–406

401



absorption is due to direct interband transitions above the ITO
bandgap (Egap~4.0 eV), with loss extending from the UV into the
blue due to logarithmically decreasing absorption commonly referred
to as an ‘Urbach tail’ [2,36]. For lower energies, near the Si bandgap
(Egap=1.1 eV), ITO suffers from free carrier absorption. Integrated
over the AM1.5 G spectrum, these effects cause a current density
reduction of 0.93 mA cm−2. By contrast, the Ag nanowire network has
very low absorption, with only 0.24 mA cm−2 lost (small grey region).
Since the Rayleigh anomaly for these grids occurs outside of the Si
absorption window [18], and higher-order diffraction is usually weak,
the nanowire-related absorption can be understood from the absorp-
tion of individual nanowires (Fig. 3c, inset). For light polarized parallel
to the nanowire, translational symmetry prevents plasmonic excitation
and only UV interband transitions contribute to the absorption. For
transverse polarization, a weak dipolar plasmonic oscillation can be
excited. For both polarizations the geometrically-tuned optical absorp-
tion cross section is less than the physical cross section, which gives
rise to anomalously high transmission.

The modified cells exhibit an IV response that depends strongly on
nanowire pitch, with both FF and Jsc affected (Fig. 3d,e). Crucially, the
nanowire fabrication process preserves high quality cell passivation as
evidenced by the consistent values of Voc for cells with and without
nanowires (Table 2).

Increased nanowire pitches show corresponding increases in Jsc
(Fig. 3d,e), in agreement with the cell absorption spectra in Fig. 3a. For
the largest pitch (4 µm) Jsc=33.6 mA cm−2, which is a current reduc-
tion of only 1.1 mA cm−2 relative to the wire-free (and low FF)
reference cell. Our optical model accurately reproduces this difference
in Jsc, predicting 1.0 mA cm−2 of parasitic plasmonic loss (Table 2).
Interestingly, this corresponds to an effective shaded area of only 0.62
Aw (where Aw is the area fraction of the cell covered by nanowires), and
highlights a key advantage of nanoscale metallization: spectrally
narrow resonances can be detuned from the solar spectrum, allowing
anomalous transmission corresponding to t=0.62 in Eq. (1). This low
optical loss relative to ITO, combined with reduced shading from the
increased finger spacing, yields a net increase of 1.6 mA cm−2 (33.6 vs.
32.0 mA cm−2) relative to the ‘standard’ cell geometry (2 mm finger
spacing, 80 nm ITO).

In addition to increased current, the 4 µm-pitched nanowire cell
shows an increase in FF relative to the ITO-only cell with 5-mm spaced

fingers 0.604–0.652). This FF increase is the result of reduced series
resistance, because the 110 Ω/sq ITO layer is supplemented by the low
resistance (15 Ω/sq) NW network. Importantly, these gains could not
be realized using a thicker ITO layer since this would both result in a
non-optimal ARC and increased parasitic loss from free carrier and
interband absorption.

For the 5 mm fingers, the result of the simultaneously increased Jsc
and FF is an increase in efficiency from the in situ 14.3% reference to
15.0%. Compared to the 2 mm-spaced cell, however, no net efficiency
increase is measured (15.0% vs. 15.0%). This is likely because the
reference with 2 mm-spaced fingers was fabricated on a separate wafer
with lower bulk recombination, giving the reference a slightly higher
Voc and FF, and cancelling the nanowire cell's current gains.
Furthermore, this nanowire-enhanced cell geometry does not yet
reduce the use of indium, and, prior to encapsulation in a module,
has the potential for Ag oxidation losses due to environmental
exposure.

2.4. Hybrid electrodes on solar cells

Both of these issues are resolved by a hybrid electrode design
consisting of Ag NWs on a very thin (22 nm) ITO layer that are
encapsulated by SiNx (62 nm). This design results in a 4-fold reduction
of the amount of indium required to produce a cell, while retaining
conductivity in the interstitial regions and, due to the conformal SiNx

overlayer, is stabilized against environmental oxidation and sulfuriza-
tion [37–40]. The residual ITO thickness must be above ~10 nm for
three reasons: (1) to protect the passivating a-Si:H during the nanowire
fabrication, (2) to minimize parasitic absorption in the a-Si layers by
spatially reducing overlap of the concentrated plasmonic near-fields
with the high index a-Si layers (na-Si=3.6–4.4 from 1.12−3.0 eV), and
(3) to minimize the substrate-induced redshift and achieve spectral
separation between the plasmonic NW resonances and the solar
spectrum maximum [41]. This approach is distinct from prior random
electrodes where the TCO doubles as the AR layer [14], allowing the AR
layer thickness to be optimized independently from the TCE conduc-
tivity and achieving nearly complete elimination of parasitic optical
losses from the ITO. These hybrid electrodes were fabricated similarly
to the networks on 80 nm thick ITO, then overcoated with low
temperature PECVD SiNx (see Methods: nanowire network fabrication
on SHJ semicells).

Optically, the hybrid electrode results in both lower parasitic
absorption and lower cell reflection relative to equivalent Ag networks
on 80 nm ITO. The reduced reflection can be clearly seen in the
measured and modeled cell absorption spectra (Fig. 4a-c). For the most
transparent network (4 µm pitch) the additional scattering loss is only
~3% at the anti-reflection peak, with reduced loss in the red spectral
range relative to the ITO-only case (Fig. 3a,b). This is due to the fact
that the SiNx has a refractive index which is nearly constant above the
Si bandgap and is well suited for a single-layer ARC (nSiNx=2.0–2.07
from 1.12−3.0 eV), while that of ITO is strongly dispersive with energy.
The reduction in absorption is less intuitive since the addition of a
dielectric shell around the plasmonic nanowires induces a redshift of
the transverse localized surface plasmon resonance into the visible,
causing an increase in fractional absorption (Fig. 4c, grey region:
0.55 mA cm−2

, compared to 0.24 mA cm−2 in Fig. 3c). This slight
increase in nanowire absorption is countered by the nearly complete
elimination of parasitic ITO loss (purple region: decreases from 0.93 to
0.24 mA cm−2 compared to Fig. 3c). In our experimental measure-
ments, the reduced absorption combines with the improved anti-
reflection properties to produce a net gain in measured Jsc of
0.5 mA cm−2 relative to the nanowire-enhanced ITO case (Table 2).

Interestingly, the small amount of nanowire absorption indicates
that encapsulated networks retain the property of anomalous transmis-
sion (t=0.77 in Eq. (1)). This is because, while the nanowires function
as lossy nanoscale antennas in a narrow spectral regime and for

Table 2
Summary of the current-voltage (IV) properties for the Ag-NW integrated
SHJ cells. Jsc values in parenthesis correspond to modeled current generation in the Si
substrate, corrected for the geometric shading loss from 185 µm fingers.

Wafer ITO (nm) Finger
spacing
(mm)

NW
pitch
(µm)

Voc

(mV)
Jsc
(mA
cm−2)

FF Eff. (%)

Wafer 1
stan-
dard
ref.

80 nm 2.0 – 696 32.0
(33.1)

0.676 15.0

Wafer 2 a 80 nm 5.0 – 683 34.7
(33.5)

0.604 14.3

Wafer 2 b 80 nm 5.0 1.0 676 31.1
(29.9)

0.661 13.9

Wafer 2c 80 nm 5.0 2.0 684 32.5
(31.6)

0.657 14.6

Wafer 2 d 80 nm 5.0 4.0 685 33.6
(32.5)

0.652 15.0

Wafer 3 a 22 nm 5.0 – 696 34.9
(35.1)

0.610 14.8

Wafer 3 b 22 nm 5.0 1.0 699 30.1
(30.5)

0.673 14.2

Wafer 3c 22 nm 5.0 2.0 699 32.5
(32.6)

0.665 15.1

Wafer 3 d 22 nm 5.0 4.0 701 34.1
(33.8)

0.670 16.0
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transverse polarization, most of the broadband solar photons remain
detuned and the AM1.5 G averaged value of σabs remains below unity
(Fig. 4c, inset). As with the nanowires on 80 nm ITO, symmetry forbids
plasmonic excitation for light polarized parallel to a nanowire and
absorption is limited to UV interband transitions. This antenna-based
anomalous transmission is unique to nanoscale ‘fingers,’ where the
physical and optical cross sections can diverge as a result of resonant
behavior.

SHJ cells with hybrid electrodes show enhanced efficiencies relative
to those with thick ITO due to a simultaneous increase in FF and Jsc
(Fig. 4d). For a reference cell with thin ITO (260 Ω/sq), series
resistance causes significant J2R losses and a correspondingly low FF

(0.610). For all nanowire pitches, the sheet resistance is sufficiently low
(≤15 Ω/sq) to achieve the maximum FF for these semicells (Table 2:
0.670 ± 0.01). The lack of a FF falloff for increasing pitch indicates that
5 mm does not exceed the optimal finger spacing, in agreement with
finger spacing optimization shown in Fig. S2. As with the thicker ITO
layer, adding nanowires does not affect Voc, indicating that passivation
is unaffected by the SCIL fabrication process even on a thin ITO layer.
With nearly constant values of FF and Voc, the efficiency of the hybrid
electrode SHJ cells is directly proportional to Jsc, which is determined
by the transparency of the top electrode. As shown in the optical
spectra (Fig. 4a-b), increased nanowire pitch corresponds to increased
transparency.
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For the largest pitch (4 µm), the measured Jsc exceeds the current of
the 80 nm ITO reference cell by 2.1 mA cm−2, which is the result of
reduced shading from increased finger spacing and low optical loss
from the nanowires. Based on the local integrated EQE spectra (Fig.
S3), we have analyzed the range of finger widths where cells would
benefit from this nanowire electrode (Fig. S4). Our measured hybrid
networks, which introduce a 3% local optical loss relative to 80 nm
ITO, can improve the efficiency of cells with fingers wider than 80–
100 µm.

This current increase, combined with FF and Voc equal to the
standard reference device, gives a 16.0% efficient cell. This is an
improvement in absolute efficiency of 1.0% relative to the 80 nm ITO
reference cell using a standard 2 mm finger spacing. Even with a fully
optimized finger spacing, based on the experimental finger width and
sheet resistance, the reference cell could achieve only 15.3% efficiency
(Fig. S2), falling short of the nanowire-enhanced cell efficiency.

3. Conclusions

We have demonstrated silver NW-based transparent electrodes that
enhance the power efficiency of practical-scale planar SHJ solar cells.
These electrodes exhibit anomalous transmission and a 7-fold im-
provement in sheet conductance relative to an 80 nm reference ITO
layer, enabling an increase in finger spacing from 2 to 5 mm without
loss of FF. We show two geometries: silver NW-enhanced ITO, and a
silver NW/SiNx hybrid electrode. For the NW-enhanced ITO, the high
conductivity enables an increase in macroscopic finger spacing, in-
creasing Jsc by 1.6 mA cm−2 without compromising the FF. The hybrid
electrode, in addition to high conductivity, achieves improved ARC
performance in the interstitial regions of the NW network by replacing
> 70% of the ITO with SiNx. Due to the low dispersion of SiNx, and
elimination of parasitic absorption from the ITO, the improvement in
Jsc rises to 2.1 mA cm−2. As a result, these planar SHJ cells modified
with hybrid electrodes show an enhancement in power conversion
efficiency from 15.0–16.0%. This increase is partially due to the use of
industrially prepared ITO with a sheet resistance of ~110 Ω/sq.
Improvements in ITO quality, along with the application of narrower
fingers than are currently screen-printed, would reduce this relative
improvement.

While shown here for untextured cells, to clearly elucidate the
underlying physics, the fabrication enabling this hybrid TCE is fully
compatible with micro- and nano-photonic texturing, including Mie
resonators [42] and inverted micropyramids [43]. With texturing to
address optical reflection, these hybrid electrodes provide a practical
pathway towards front-contacted SHJ cells with high efficiencies and
with a reduced dependence on rare metals.

4. Methods

4.1. Nanowire network fabrication on SHJ semicells

Flat, monofacial silicon heterojunction semicells were prepared on
5.5×5.5 cm2

float zone Si wafers (280 ± 10 µm thick, n-type, < 111 > ,
1–5 Ω-cm) with either 22 nm or 80 nm of sputtered ITO on the sun-
facing surface. First, the wafers were bifacially passivated with a thin
(5 nm) layer of intrinsic a-Si:H, giving millisecond carrier lifetimes (2–
10 ms). Thin, highly doped a-Si:H layers were then deposited to form
the a-Si/c-Si heterojunction and a back surface field. The rear of the cell
was contacted with a conductive mirror (ITO+Ag), and the sun-facing
surface of the semicell was sputtered with ITO. All semicell processing
steps were performed at the Energy Research Center of the
Netherlands (ECN) using equipment and methods compatible with
industrial scale production.

To create the nanowire pattern the semicells were first cleaned by
5 min sonication in H2O, dried with N2, and then annealed under
vacuum for 30 min at 180 °C to repair damage from the ITO sputtering

[44]. Next, ~500 nm PMMA 35k(500) was spincoated at 1000 rpm for
45 s, followed by a 5 min bake at 150 °C. To make the PMMA surface
hydrophilic a short O2 reactive-ion etch (RIE) was performed (descum:
10 s, 5 mTorr, 50 W, with 25 sccm O2). Liquid silica sol-gel (home-
made [45]) was spun onto the cell (1000 rpm, 10 s) to form a uniform
layer of 60–70 nm, and then a PDMS nano-imprint stamp of the wire
pattern was applied. This stamp contained three 2.0×2.0 cm2 nanowire
patterns, and an empty ‘reference’ area to allow comparison of the
network-modified areas with a cell fabricated simultaneously on the
same Si wafer. After 30 min of curing in ambient conditions, the stamp
was removed. The network pattern was then transferred from the solgel
into the underlying PMMA by an RIE etch to remove the residual sol-
gel layer within the nanowire trenches (150 s, 15 mTorr, 67 W, with 25
sccm CHF3 and 5 sccm Ar), followed by a 12 min O2 descum to create
trenches in the PMMA.

Thermal evaporation was used to deposit ~2 nm of Ge (0.5 Å/s) and
120 ± 2 nm of Ag (2.0 Å/s) at a base pressure of ~10−6 mbar. The Ge
functions as a seed layer that controls grain size and improves
adhesion. Following evaporation, liftoff was performed by placing the
samples vertically into an acetone bath with 10 min megasonication.
The nanowire-coated samples were rinsed in isopropanol and dried
with N2. Metallization was completed by evaporating Ag fingers onto
the nanowire grid through a laser-cut shadow mask (500 nm, 5–8 Å/s).

Finally, the thin-ITO semicells were overcoated with 62 nm of SiNx

by low temperature PECVD (175 °C). Coating at this temperature had
no measurable effect on the physical stability of the nanowire network.
For measurement the four cells were laser cut from the semicell wafer
(single completed cell: 2.5×2.5 cm2), and individually attached to
copper plates with Ag paste.

4.2. Optical characterization and modeling

Optical reflection spectra were measured using a supercontinuum
laser (Fianium SC400-4) in combination with an integrating sphere
(LabSphere, 4″). To prevent damage to the networks from the ps-
pulsed illumination the laser output was attenuated using a glass
wedge; no additional attenuating or focusing optics were required due
to the large (4.0 cm2) area of the NW networks. Reflected light was
collected from the sphere using a multi-mode fiber, and measured with
a spectrometer (Acton SpectraPro 2300i) and Si CCD (Princeton Pixis
400). Spectra were normalized to the light reflected by a protected Ag
mirror. Cell absorption is reported as 1-reflection.

Optical properties for these cell designs were calculated in 3D from
λ0=300–1110 nm using a commercial implementation of FDTD
(Lumerical). Nanowire and layer dimensions were identical to the
measured experimental values, with dielectric constants determined
using spectroscopic ellipsometry.

4.3. Electrical characterization

To determine the sheet resistance of the Ag NW networks in the
absence of underlying ITO and Si, NW networks were fabricated on
borosilicate glass wafers. Network dimensions were verified to match
the networks applied to the semicells using AFM (for height) and SEM
(for width, pitch). A thin conductive Ag strip was evaporated through a
shadow mask onto two sides of each 2.0×2.0 cm2 network. The sheet
resistance was then determined using a four-point measurement with
microprobes connected to a source meter (Agilent B2902A) to measure
the IV response between 0.5 and 1 mV in 0.01 mV increments. The
sheet resistance was determined by a linear fit to the data. Sheet
resistances for both 80 nm and 22 nm ITO were measured using a four-
point probe following deposition on SHJ semicells, where the cell was
unilluminated and the depletion region was assumed to behave as an
insulator.

The current vs. voltage (IV) response of the solar cells was
measured under filtered emission from a Xenon lamp to simulate
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AM1.5 G illumination (Newport Oriel Sol2A Class ABA), with the
output calibrated using a certified reference cell. The IV response was
measured with a four-point measurement using a source meter (Agilent
B2902A), with two probes contacting the Cu backing plate and two
probes on a bus bar connecting the fingers. The measured voltage range
was −1.2 to 1.2 V. A shadow mask was used to define the illuminated
area; measurements were taken with both an aperture area of
1.8×1.8 cm2 and 1.8×2.0 cm2, with currents normalized by the aper-
ture area to give current density. The mask area did not have an
influence on the IV response exceeding the cell-to-cell variation from
Table 2.
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