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A Claudio

Sole sul tetto dei palazzi in costruzione
Sole che batte sul campo di pallone

E terra e polvere che tira vento
E poi magari piove

Nino cammina che sembra un uomo
Con le scarpette di gomma dura

Dodici anni e il cuore pieno di paura.
Ma Nino non aver paura di sbagliare un calcio di rigore

Non è mica da questi particolari
Che si giudica un giocatore

Un giocatore lo vedi dal coraggio
Dall’altruismo e dalla fantasia.

E chissà quanti ne hai visti e quanti ne vedrai
Di giocatori tristi che non hanno vinto mai

Ed hanno appeso le scarpe a qualche tipo di muro
E adesso ridono dentro al bar

E sono innamorati da dieci anni
Con una donna che non hanno amato mai

Chissà quanti ne hai veduti
Chissà quanti ne vedrai.

Nino capì fin dal primo momento
L’allenatore sembrava contento

E allora mise il cuore dentro le scarpe
E corse più veloce del vento

Prese un pallone che sembrava stregato
Accanto al piede rimaneva incollato

Entrò nell’area tirò senza guardare
Ed il portiere lo fece passare

Ma Nino non aver paura di tirare un calcio di rigore
Non è mica da questi particolari

Che si giudica un giocatore
Un giocatore lo vedi dal coraggio

Dall’altruismo e dalla fantasia.
Il ragazzo si farà

Anche se ha le spalle strette
Quest’altr’anno giocherà

Con la maglia numero sette

La leva calcistica della classe ’68 - Francesco De Gregori
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SUMMARY

Image processing and edge detection are at the core of many newly emerging technolo-
gies, such as augmented reality, autonomous driving and more generally object recogni-
tion. Image processing is typically performed digitally using integrated electronic cir-
cuits and algorithms, implying fundamental speed limitations and significant power
needs. It can also be performed instantaneously and at low-power by purely analog
Fourier optics, but this requires bulky optical components.

The unprecedented control on light propagation that has been recently achieved by
optical metasurfaces opens entirely new opportunities for analog optical computing. In
fact, “computing metasurfaces” would benefit from the speed and low power consump-
tion of optics while at the same time being a chip-scale technology compatible with hy-
brid optical and electronic data processing on a single chip.
Here, we demonstrate for the first time that judiciously engineered silicon metasurfaces
can perform mathematical operations and optical image edge detection in a fully ana-
log way. The key to our work is that Fano-resonances in a compact geometry of silicon
nanobeam arrays unlock a diversity of operations in the Fourier domain acting on am-
plitude and phase. We present metasurface designs that perform either 1st– or 2nd–order
spatial differentiation. We experimentally demonstrate the 2nd–derivative operation on
two-tone and graytone input images, directly showing the potential of all-optical edge
detection. A unique advantage of this silicon metasurface geometry is that it operates at
a large numerical aperture of 0.35, more than 25 times higher than previously explored
schemes, meaning it can be readily integrated in high-performance imaging systems. In
addition, it also offers largely enhanced efficiency, ensuring close-to-ideal transmission
efficiency for differentiation using passive devices.
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2 1. INTRODUCTION

T HE amount of data that is being globally created, processed and stored is increas-
ing at a remarkable pace. Furthermore, the advent of new technologies, such as

augmented reality (AR), autonomous driving, and many other emerging techniques, re-
quires on-the-fly processing of large data files, such as images, at an increasing rate.
Image processing is usually performed digitally but the speed and power consumption
limits of standard microelectronic components have become a true bottleneck. Analog
optical processing provides a promising route that may overcome these limitations.

While a lot of data is nowadays stored, guided and routed in the optical domain, com-
puting is still performed digitally. The idea of computing optically can be traced back
to the early 1960s prompted by pioneering work that ingeniously exploited concepts of
Fourier optics [1–4] . Among others, all-optical pattern recognition and optical process-
ing of synthetic–aperture radar (SAR) data were the most successful. The freedom of
choice about the linear transformation allowed by a generic spatial filter prompted the
idea of designing responses in k–space specific to a certain type of input. This is the
concept at the base of matched spatial filters and in turn at the core of optical pattern
recognition[5–8]. As shown in Figure 1.1a, an optical processor is able to discriminate the
character contained in the input image and signals the answers with a bright spot under
the letter “P”. More elaborate approached even achieved real–time face recognition [9].

a b

c

Figure 1.1: a A set of matched spatial filters can recognize an input character. The bright spot signals the out-
come of the recognition scheme. [10] b Photograph of a pattern–recognition system [4] c Synthetic–aperture
radar image of Monroe, MI (USA) [2]

Fourier optics based optical processors were also successfully used to apply linear trans-
formation on data-sets that are not human readable. Specifically, in the mid 1960s Cutrona
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Figure 1.2: a Conceptual sketch of a GRIN–based metamaterial performing 1st– or 2nd–order derivative. b
Plasmonic spatial differentiator exploiting SPP. c Spatial transfer function spectra of the sample sketched in
b, experimental measurement (dotted lines) and numerical fitting (solid lines). d Input image modulated in
phase and output image demonstrating edge detection. Re-adapted from [11, 14].

et al.[2] found a way to convert the microwave reflectivity signals acquired by special
side–looking airplane radars (SARs) into high–resolution pictures (see Figure 1.1c) These
elegant all-optical solutions, however, require bulky optical components that are not
integrable into nanophotonic or microelectronic systems; hence,as the transistor size
scaled down dramatically and digital computational power skyrocketed, these approaches
became quickly obsolete.

The unprecedented control of light propagation over a sub-wavelength thickness
that has been recently enabled by optical metasurfaces opens entirely new opportuni-
ties for analog optical computing [11–16]. In fact, “computing metasurfaces” may benefit
from the speed and low power consumption of optics while being amenable to on-chip
integration, thus enabling hybrid optical and electronic data processing on a single chip.
In this context the work of Silva et al.[11] is groundbreaking as it introduced the idea of
using suitably designed metamaterials to perform arbitrary mathematical operations.
As conceptually illustrated in Figure 1.2a, a series of optimized graded–index (GRIN)
dielectric slabs can transform a given input wave signal f (y) into its 1st– or 2nd–order
derivative. Although the high conceptual impact, this approach remained experimen-
tally unpractical given the complexity of the design.
More recently, a simpler approach based on plasmonic resonances [14] demonstrated
experimentally all-optical edge detection. This work exploits the possibility of coupling
to Surface Plasmon Polaritons (SPP) at the interface between air and metal by means of
a prism (Kretschmann configuration)[17]. Indeed, for a given metal thickness, light is
efficiently coupled only at a specific angle due to momentum matching while the metal
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surface is completely reflective when this condition is not met. This, in turn, results into
a sharp dip in the transfer function of the system which can be used efficiently as an high
pass filter (see Figure 1.2b-d): the edges of input image (Stanford tree logo) modulated
in phase are enhanced in the output image as a result of the spatial filtering. The draw-
backs of this configuration are the limited NA and the use of bulky elements: while the
former (NA∼ 0.01) implies low spatial resolution and does not allow readily integration
in imaging system (which usually have larger NA), the latter further limits any possible
on-chip implementation.
In recent theoretical work [15, 16] the same group designed photonic crystal slabs spatial
filters reducing greatly the device footprint. However, also in this cases the NA is ∼ 0.01.

OUTLINE OF THE THESIS
We introduce dielectric metasurfaces that perform optical image edge detection in the
analog domain using a sub–wavelength geometry that can be readily integrated with
detectors. The metasurface is composed of a suitably engineered array of nanobeams
designed to perform either 1st– or 2nd–order spatial differentiation. We experimentally
demonstrate the 2nd–derivative operation on an input image, showing the potential of
all-optical edge detection using a silicon metasurface geometry working at a numerical
aperture as large as 0.35.

In Chapter 2 the theoretical foundations of our work are presented. A brief section
reviews the concepts of Fourier Optics needed throughout the thesis and the idea of us-
ing Fano resonances to design the transfer function is explained. A simple design recipe
shows how to tailor the spatial dispersion of the metasurface and finally the optimized
transfer functions are tested numerically.
Chapter 3 deals with the experimental efforts related to this work. First, the fabrication
process is described step by step both for the metasurface and for the images that are
used as diapositives. Next, the fabrication results are commented and the samples’ op-
tical characterization is discussed. The optical setups used are described along with the
measurements. Finally, the experimental 2nd–order differentiation is compared to its
ideal counterpart showing significant agreement.
Lastly, Appendix A contains parts of the lengthy calculations supporting Chapter 2, in-
cluding the Couple–Mode–Theory derivation needed in the design recipe and a brief
recap of the scattering matrix formalism.
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2
THEORY AND DESIGN

This chapter lays the theoretical foundations of our work. Specifically, the first section will
briefly review known notions of Fourier Optics defining concepts that are useful through-
out the thesis. Next, the idea of using a Fano resonant metasurface as a spatial filter is
introduced. Section 2.3 describes how to tailor the spatial dispersion of the metasurface by
manipulating its leaky modes dispersion and the related Fano resonance asymmetry and
linewidth. Finally, in Section 2.4 the optimized transfer functions are used to numerically
test how well the ideal 1st– and 2nd–order differentiation are approximated by our realistic
metasurface designs.
Parts of the lengthy calculations supporting this Chapter are in Appendix A.

The first part of Section 2.1 dealing with Fourier optics follows the notation and the description of Ref.[1].
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2.1. FOURIER OPTICS

A N arbitrary two–dimensional input wave signal (i.e. an image) can be represented in
general by a complex function f (x, y). If the latter function is absolutely integrable

(i.e. f ∈ L1(R2)) it can be thought as the superposition of spatial harmonic functions of
the form

F (νx ,νy )exp
[
i 2π(νx x +νy y)

]
(2.1)

where F (νx ,νy ) is a complex amplitude and νx , νy are called spatial frequencies and
define the harmonic functions’ periodicities Λx = 1/νx and Λy = 1/νy along the x and y di-
rections. This concept is intuitively shown in Figure 2.1 and can be rigorously formalized
as

f (x, y) =
�∞

−∞
F (νx ,νy )exp

[
i 2π(νx x +νy y)

]
dνx dνy . (2.2)

where F (νx ,νy ) is the Fourier transform of f (x, y). Next, it is important to show that
these harmonic functions can be mapped one–to–one to simple plane waves (see Fig-
ure 2.2a). In fact, any arbitrary harmonic function can be seen as a slice of the monochro-
matic plane wave U (x, y, z) = A exp

[
i (kx x +ky y +kz z)

]
, with wavevector�k = (kx ,ky ,kz ),

complex amplitude A and wavelength λ, at the plane z = 0, provided that kx = 2πνx and
ky = 2πνy . Vice-versa, the knowledge of the spatial frequencies of an harmonic function
completely determines the corresponding plane wave as the knowledge of kx and ky is
sufficient to determine the kz via the relation k2

x +k2
y +k2

z = 2π/λ2.
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Figure 2.1: An arbitrary image can be expanded into a set of harmonic functions. Here the real part of Eq. (2.1)
is plotted for three couples (νx ,νy ) and F (νx ,νy ) = 1.

Suppose that a monochromatic plane wave with unit amplitude propagating along the z
axis impinges on thin optical element (e.g. a transparency or a diapositive) with a certain
complex transmission function f (x, y). All the harmonic functions composing f (x, y)
can be seen as a slice of a corresponding plane wave propagating in a certain direction
making angles θx = arcsin(λνx ) and θy = arcsin(λνy ) with the y-z and x-z planes, respec-
tively. Hence, as the plane wave is passing through the transparency it is also dispersed
into its spatial components and transmitted wave U (x, y, z) is a superposition of plane
waves

U (x, y, z) =
�∞

−∞
F (νx ,νy )exp

[
i 2π(νx x +νy y)

]
exp(i kz z)dνx dνy . (2.3)

This bundle of plane waves, schematically illustrated in Figure 2.2b, is the spatial content
of the image and contains its information just as f (x, y) does. Manipulating the plane
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Figure 2.2: a A thin optical element that has a complex transmission equal to the harmonic function
exp[i 2πνx x] a bends light at an angle θx = acrsin(λνx ). This is the working principle of a phase grating. b
the same concept can be extend to an arbitrary complex transmission f (x, y) composed of many harmonic
functions.

waves composing it is equivalent to performing a certain operation on f (x, y) itself.

The advantage of such theoretical framework becomes clear when dealing with arbitrary
traveling waves that are interacting with optical systems. Indeed, if the system response
is known for every plane wave composing the arbitrary input signal then output can
be readily calculated. In particular, if the two dimensional optical system relating an
input function f1(x, y) to the output function f2(x, y) is linear and shift–invariant (or
isoplanatic)1 then

F2(νx ,νy ) = H(νx ,νy )F1(νx ,νy ) (2.4)

where F1(νx ,νy ) and F2(νx ,νy ) are the Fourier transforms of f1 and f2 and H(νx ,νy ) is
a function describing the response of the optical system to plane waves called transfer
function. Intuitively, by modulating its spatial content, H(νx ,νy ) transforms f1(x, y) into
f2(x, y).

Among the vast realm of operations, nth–order spatial differentiation is of great ap-
peal in the field of augmented reality and object recognition. In fact, performing the
derivative of an image reveals its edges and, in turn, edge detection is a fundamental
tool for object recognition. Thus, it is important to assess what transfer function corre-
sponds to the latter operation. Moving to the 1D case, if f (x) is an arbitrary wave in-

put signal, then its nth–order derivative d n f (x)
d xn equals (i kx )nF (kx ) in the spatial domain,

where F (kx ) is the Fourier transform of f (x). Thus, the transfer function corresponding
to the nth–order derivative is H(kx ) = (i kx )n .

Proof. d n f (x)
d xn → (i kx )nF (kx )

Suppose f (x) is an arbitrary function ∈ L1(R) and let us introduce the notation F [ f (x)]

1A system is said linear if the response to the sum of any linear combination of inputs is the linear combination
of the responses to each input. A system is said isoplanatic if a shift to the input function in space corresponds
to the same shift in output.
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traveling waves that are interacting with optical systems. Indeed, if the system response
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input function f1(x, y) to the output function f2(x, y) is linear and shift–invariant (or
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a function describing the response of the optical system to plane waves called transfer
function. Intuitively, by modulating its spatial content, H(νx ,νy ) transforms f1(x, y) into
f2(x, y).

Among the vast realm of operations, nth–order spatial differentiation is of great ap-
peal in the field of augmented reality and object recognition. In fact, performing the
derivative of an image reveals its edges and, in turn, edge detection is a fundamental
tool for object recognition. Thus, it is important to assess what transfer function corre-
sponds to the latter operation. Moving to the 1D case, if f (x) is an arbitrary wave in-

put signal, then its nth–order derivative d n f (x)
d xn equals (i kx )nF (kx ) in the spatial domain,

where F (kx ) is the Fourier transform of f (x). Thus, the transfer function corresponding
to the nth–order derivative is H(kx ) = (i kx )n .

Proof. d n f (x)
d xn → (i kx )nF (kx )

Suppose f (x) is an arbitrary function ∈ L1(R) and let us introduce the notation F [ f (x)]

1A system is said linear if the response to the sum of any linear combination of inputs is the linear combination
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for the Fourier transform of f (x)

F [ f (x)] =
∫∞

−∞
f (x)e−i kx x dx (2.5)

then the transform of the first derivative f ′(x) of the function reads

F [ f ′(x)] =
∫∞

−∞
f ′(x)e−i kx x dx (2.6)

This integral can be solved by parts
∫∞

−∞
f ′(x)e−i kx x dx = f (x)e−i kx x

∣∣∣+∞−∞+ i kx

∫∞

−∞
f (x)e−i kx x dx (2.7)

the first term goes is zero since f ∈ L1(R) while the second term is just F [ f (x)]. Hence

F [ f ′(x)] = i kF [ f (x)] (2.8)

and the transfer function corresponding to 1st–order derivative is H1 = i kx . Repeating

this procedure n times demonstrates the property d n f (x)
d xn → (i kx )nF (kx ).

As a consequence, 2nd–order differentiation can be achieved by a metasurface that has
a parabolic transfer function which modulates the spatial frequencies composing the
input signal[1, 2]. If the metasurface can be treated as a simple two–ports optical sys-
tem (i.e. no extra diffraction channels are opened other than the 0th–order) then the
system’s transfer function coincides with scattering matrix element representing trans-
mission S21 (see Appendix A for a brief introduction to the scattering matrix formalism).
Hence, from now on, S21(kx ) will be also referred to with the term transfer function. As
explained within next paragraph, we introduce the idea of using a Fano–resonant meta-
surface to design a specific angular transmission response and therefore S21(kx ).

2.2. FANO RESONANCE
In this work, we design and realize optical metasurfaces composed of dielectric nanobeams
that are illuminated by light polarized along the beams’ direction. We tailor the spatial
dispersion of the metasurfaces by controlling the leaky modes guided along the surface[3–
6]. Indeed, when the frequency and in-plane wave vector of incident light match one of
these quasi-guided modes, an asymmetric Fano line-shape appears in the transmission
spectrum [7–9], due to interference with the broad Fabry-Pérot resonance determined by
the thickness and fill fraction of the structure. Figure 2.3a shows simulated transmission
S21 spectra of an array of dielectric nanobeams (width w = 182 nm, height h = 123 nm,
pitch p = 250 nm and refractive index n = 4 typical for Si) for incident angles ranging
from 0 to 0.3 radians (17◦). Due to the Fano interference, the transmission swings from
0 to unity within a narrow bandwidth. The sharp response in frequency corresponds
to strong non-locality: the spectrum is largely dependent on the incident angle and the
transmission minimum shifts from λ= 633 nm to λ= 618 nm over the simulated angu-
lar range. The strong amplitude variation in transmission, and the sensitivity to the in-
coming k-vector, are often undesirable features of resonant metasurfaces, yet here these
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Figure 2.3: a Fano-resonant metasurface transmission spectra. Simulated transmission spectra of a metasur-
face consisting of an array of dielectric nanobeams (width w = 182 nm, height h = 123 nm, pitch p = 250 nm
and refractive index n = 4) as the incident angle is changed from 0 (blue line) to 0.3 rad (yellow line) in 15 steps.
The red dashed line indicates the wavelength of operation (λ = 633 nm). b Cross-cut through a showing the
transmission atλ= 633 nm as the incidence angle θ is changed. Insets: electric field amplitude profile within a
unit cell at the resonant wavelength; schematic of the proposed structure showing incoming light polarization.

features enable the use of the metasurface as a Fourier spatial filter, and tailor with large
flexibility its angular transmission response and thus transfer function. In fact, by tun-
ing the dispersion of the quasi-guided mode resonance, as well as the Fano line-shape
asymmetry and linewidth, it is possible to design an optimized transfer function for a
specific excitation wavelength (see Figure 2.3b), as described in the next paragraph.

2.3. DESIGN
The main idea behind our designs of metasurfaces for image processing is that their
transfer function can be tuned by introducing a Fano resonance in transmission, and
manipulating its dispersion asymmetry and linewidth. In order to prove this property,
we use the general formula for a Fano lineshape [8, 10]

|S21| = (ε+q)2

ε2 +1
m , (2.9)

where S21 is the scattering matrix element representing transmission for a generic two-
port optical system, m = 1/(1+q2) is a normalization factor, and ε(kx ) = 2(ω−ω0(kx ))/Γ is a
dimensionless parameter that traces the detuning of the operation frequency ω relative
to the resonance at ω0(kx ) (dispersing with wavevector kx ), normalized to the linewidth
Γ of the resonance. One way to achieve a dispersive resonance frequency is by using one
of the leaky-wave resonances of the metasurface. In this case, incident waves are coupled
to surface waves propagating along the metasurface through the additional momentum
added to them by the metasurface and ω0(kx ) generally follows the dispersion of these
surface waves. The variable q is a phenomenological lineshape parameter which reflects
the contribution of the discrete state in a Fano resonance relative to that of the contin-
uum. Without specifying the nature of the resonance yet we show how it is possible to
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Figure 2.4: a Plot of |S21| (from Eq.(2.9)) for q = 0 (orange solid line), q = 1 (blue solid line), q = 100 (yellow solid
line). b Plot of |S21| (from Eq.(2.9)) as function of ε̄ and k̄x for a parabolic dependence of ω0 on kx and fixed
values for the shape parameter q = 1 and for the linewidth Γ = 1. c Plot of |S21| (from Eq.(2.9)) as a function
of k̄x as q is changed from 0 (blue line) to 2 (yellow line) in steps of 0.2. The red solid line corresponds to the
indicated cross-cut through b.

design the transfer function |S21(kx )| by tuning the parameters in Eq.(2.9). Starting with
q , Figure 2.4a shows how it controls the asymmetry of the Fano lineshape: for q = 0
the transmission has a symmetrical dip at the ε corresponding to the system resonance;
for increasing values of q the lineshape evolves from a completely asymmetric one to a
standard Lorentzian peak (for q →∞, data not shown). In the most general case, ω0(kx )
can be expressed as ω0(kx ) = ω0(0)+∑

n αn( ckx
ω0(0) )n by applying the Taylor expansion at

kx = 0. Note that kx is normalized versus the free-space wavenumber at ω0(0) so that all
αn are expressed in the same frequency units. In reciprocal structures ω0(−kx ) =ω0(kx ),
indicating that all the odd-order terms are zero (α1 = α3 = ·· · = 0). Then, the dominant
term in the expansion is the one with n = 2, and in Figure 2.4b we plot the transmission
as a function of the normalized frequency ε̄ = 2(ω−ω0(0))/Γ and normalized wavenumber
k̄x = ckx/ω0(0) for fixed values of q and Γ and assuming only the second-order dominant
term in the Taylor expansion of ω0(kx ) with α2 =−3/2.
Taking a cross cut of the data at the ε̄ of the minimum for kx = 0 it is possible to study the
behavior of |S21(kx )| as a function of q . As shown in Figure 2.4c, tuning the asymmetry
of the Fano lineshape strongly affects the concavity and shape of the transfer function
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|S21(kx )|. In particular for q = 1 a close-to-parabolic shape can be obtained, similar to
what is desired for the optimized 2nd–order differentiation. It is important that, in actual
realizations, also q and Γ might disperse with kx but for the sake of simplicity this is not
taken into account here.

Next, we discuss how the structural parameters of the metasurface are connected to
the variables just described. While there is no trivial way to design ω0(kx ), it is straight-
forward to tune q . Figure 2.5a shows the simulated transmission spectra of an array
of nanobeams (refractive index n = 4) with fixed width (w = 200 nm) and periodicity
(p = 250 nm) as the height h is swept from 50 nm to 200 nm. It easy to notice how the
asymmetry of the Fano line shape changes as h is increased (see Figure 2.5b). The Fano
lineshapes for this type of metasurfaces are induced by the interference between sharp
quasi-guided modes that can be launched in-plane along the structure and a broader
Fabry-Pérot (FP) background determined by the fill fraction F and the height h of the
structure; these two different light pathways correspond to spectral features that are
easily distinguishable in Figure 2.5a. Changing the height of the structure shifts the
frequency response of both pathways and thereby controls the amplitude and phase at
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design the transfer function |S21(kx )| by tuning the parameters in Eq.(2.9). Starting with
q , Figure 2.4a shows how it controls the asymmetry of the Fano lineshape: for q = 0
the transmission has a symmetrical dip at the ε corresponding to the system resonance;
for increasing values of q the lineshape evolves from a completely asymmetric one to a
standard Lorentzian peak (for q →∞, data not shown). In the most general case, ω0(kx )
can be expressed as ω0(kx ) = ω0(0)+∑

n αn( ckx
ω0(0) )n by applying the Taylor expansion at

kx = 0. Note that kx is normalized versus the free-space wavenumber at ω0(0) so that all
αn are expressed in the same frequency units. In reciprocal structures ω0(−kx ) =ω0(kx ),
indicating that all the odd-order terms are zero (α1 = α3 = ·· · = 0). Then, the dominant
term in the expansion is the one with n = 2, and in Figure 2.4b we plot the transmission
as a function of the normalized frequency ε̄ = 2(ω−ω0(0))/Γ and normalized wavenumber
k̄x = ckx/ω0(0) for fixed values of q and Γ and assuming only the second-order dominant
term in the Taylor expansion of ω0(kx ) with α2 =−3/2.
Taking a cross cut of the data at the ε̄ of the minimum for kx = 0 it is possible to study the
behavior of |S21(kx )| as a function of q . As shown in Figure 2.4c, tuning the asymmetry
of the Fano lineshape strongly affects the concavity and shape of the transfer function
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|S21(kx )|. In particular for q = 1 a close-to-parabolic shape can be obtained, similar to
what is desired for the optimized 2nd–order differentiation. It is important that, in actual
realizations, also q and Γ might disperse with kx but for the sake of simplicity this is not
taken into account here.

Next, we discuss how the structural parameters of the metasurface are connected to
the variables just described. While there is no trivial way to design ω0(kx ), it is straight-
forward to tune q . Figure 2.5a shows the simulated transmission spectra of an array
of nanobeams (refractive index n = 4) with fixed width (w = 200 nm) and periodicity
(p = 250 nm) as the height h is swept from 50 nm to 200 nm. It easy to notice how the
asymmetry of the Fano line shape changes as h is increased (see Figure 2.5b). The Fano
lineshapes for this type of metasurfaces are induced by the interference between sharp
quasi-guided modes that can be launched in-plane along the structure and a broader
Fabry-Pérot (FP) background determined by the fill fraction F and the height h of the
structure; these two different light pathways correspond to spectral features that are
easily distinguishable in Figure 2.5a. Changing the height of the structure shifts the
frequency response of both pathways and thereby controls the amplitude and phase at
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which they interfere to generate the asymmetric lineshape. This property is formalized
in Coupled-Mode Theory (CMT)[11, 12] that provides an analytical form for the trans-
mission of a system with a guided-mode resonance (see Appendix A)

S21 = t ± −(r ± t )γ

i (ω−ω0)+γ
, (2.10)

where ω0 is the resonance frequency, γ is the radiative leakage rate and r and t are
the reflection and transmission Fresnel coefficient for a uniform slab of index neff =
[(1−F )n2

0+F n2]1/2 (with n = 4 and n0 = 1)[13]. Thus, the first term in Eq.(2.10) represents
the broad FP background while the second term represents the guided-mode-resonant
pathway. Since these two terms are complex valued it is important to study their phase

difference ∆φ= arg(t )−arg(± −(r±t )γ
i (ω−ω0)+γ ) on resonance to understand how the two path-

ways combine and hence determine the final asymmetry of the Fano resonance. To do
this, we fit the simulated transmission of Figure 2.5a for three different heights (see Fig-
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ure 2.5b–c) using Eq.(2.10). Figure 2.5c shows the amplitude of the two pathways that are
composing the fitted functions (dashed blue lines) as well as their phase difference ∆φ

at the resonance wavelength (inset) highlighting the importance of this phase lag and
its influence on the final resonant lineshape. To conclude, thickness tuning provides a
direct handle on the asymmetry parameter in |S21|, which in turn gives control over the
curvature of the transfer function around kx = 0.

Next, we assess how to control the numerical aperture of operation. This is directly con-
trollable by the linewidth parameter Γ in Eq.(2.9). Figure 2.6 shows |S21(kx )| for fixed q
and a parabolic ω0(kx ) as Γ is increased. As the linewidth of the resonance is increased
also the metasurface operational wavevector range is expanded. Hence, Γ allows direct
tuning of the metasurface numerical aperture (NA). In simulation, it is possible to tune
the linewidth by changing the array periodicity while keeping the nanobeam dimensions
fixed, as shown in Figure 2.7a–b. However, an upper bound on periodicity is set by the
opening of higher order diffraction channels at large pitches. These would complicate
the design of the transfer function and drop the efficiency.

In the case of 1st–order differentiation, not only the amplitude of the transfer func-
tion |S21(kx )|, but also the phase arg(S21(kx )) is important. In fact, such operation re-
quires a response that has odd–symmetry around the sample normal S21(−kx ) =−S21(kx ).
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which they interfere to generate the asymmetric lineshape. This property is formalized
in Coupled-Mode Theory (CMT)[11, 12] that provides an analytical form for the trans-
mission of a system with a guided-mode resonance (see Appendix A)

S21 = t ± −(r ± t )γ

i (ω−ω0)+γ
, (2.10)

where ω0 is the resonance frequency, γ is the radiative leakage rate and r and t are
the reflection and transmission Fresnel coefficient for a uniform slab of index neff =
[(1−F )n2

0+F n2]1/2 (with n = 4 and n0 = 1)[13]. Thus, the first term in Eq.(2.10) represents
the broad FP background while the second term represents the guided-mode-resonant
pathway. Since these two terms are complex valued it is important to study their phase

difference ∆φ= arg(t )−arg(± −(r±t )γ
i (ω−ω0)+γ ) on resonance to understand how the two path-

ways combine and hence determine the final asymmetry of the Fano resonance. To do
this, we fit the simulated transmission of Figure 2.5a for three different heights (see Fig-
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ure 2.5b–c) using Eq.(2.10). Figure 2.5c shows the amplitude of the two pathways that are
composing the fitted functions (dashed blue lines) as well as their phase difference ∆φ

at the resonance wavelength (inset) highlighting the importance of this phase lag and
its influence on the final resonant lineshape. To conclude, thickness tuning provides a
direct handle on the asymmetry parameter in |S21|, which in turn gives control over the
curvature of the transfer function around kx = 0.

Next, we assess how to control the numerical aperture of operation. This is directly con-
trollable by the linewidth parameter Γ in Eq.(2.9). Figure 2.6 shows |S21(kx )| for fixed q
and a parabolic ω0(kx ) as Γ is increased. As the linewidth of the resonance is increased
also the metasurface operational wavevector range is expanded. Hence, Γ allows direct
tuning of the metasurface numerical aperture (NA). In simulation, it is possible to tune
the linewidth by changing the array periodicity while keeping the nanobeam dimensions
fixed, as shown in Figure 2.7a–b. However, an upper bound on periodicity is set by the
opening of higher order diffraction channels at large pitches. These would complicate
the design of the transfer function and drop the efficiency.

In the case of 1st–order differentiation, not only the amplitude of the transfer func-
tion |S21(kx )|, but also the phase arg(S21(kx )) is important. In fact, such operation re-
quires a response that has odd–symmetry around the sample normal S21(−kx ) =−S21(kx ).
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In other words, the transmission phase for positive kx values should be phase-shifted by
π compared to that of negative kx values. In order to achieve this asymmetric phase
response, it is necessary to break the unit cell’s mirror symmetry both along the propa-
gation (i.e. z–axis) and transverse (i.e. x–axis) directions. Invoking Lorentz reciprocity,
it is easy to show that breaking the mirror symmetry only along the x–axis is not suffi-
cient (see Figure 2.8a) to generate a transmission response of odd symmetry. Indeed, the
transmission at negative incidence angles (from port 1 to 4) S41 has to be equal to the
transmission from port 4 to 1, i.e. S14, by reciprocity (see Equation (A.9) of Appendix A).
Yet the latter has in turn to be equal to S32 if the symmetry along the z–axis is not also
broken. Thus, at asymmetry along x yet mirror symmetry in z the transmission remains
a symmetric function of kx . This fact can also be observed in simulation as shown in Fig-
ure 2.8b. Adding a residual layer of thickness t below the nanobeams breaks the symme-
try along the z–axis, and thereby provides the odd–symmetry system response required
for odd–order differentiation. Simulations show that the thickness t provides control
over the phase asymmetry (see Figure 2.8b).

2.4. OPTIMIZED TRANSFER FUNCTIONS AND NUMERICAL TESTS
Using the insight gained from the previous paragraph it is possible to design metasur-
faces with specific transfer functions optimized for 1st– and 2nd–order spatial differentia-
tion. Figure 2.9a shows the simulated transmission amplitude |S21| and phase arg(S21) as
a function of the in-plane wave vector kx , normalized by the free space wavevector k0 at
the design wavelength λ= 633 nm for a metasurface composed of dielectric nanobeams
(width w = 182 nm, height h = 123 nm, pitch p = 250 nm and refractive index n = 4 typ-
ical for Si). In this design, optimized to perform 2nd–order differentiation, the angular
response is close in amplitude to the ideal parabolic shape. The phase response shows a
variation of approximately 0.9π, deviating at high angles from the ideal constant phase
response, but still providing a close–to–ideal second derivative response.
Our metasurface design has two key features that distinguish it from earlier designs. First
of all, the metasurface operational numerical aperture is large (NA � 0.35). This fea-
ture enables processing images with high spatial content and hence a resolution close to
the diffraction limit. Moreover, it allows for direct implementation into standard imag-
ing systems with similar NA, for instance by placing the metasurface right in front of
a charge-coupled device (CCD) detector array, without needs for additional imaging
lenses. This is a major advance over previously explored spatial differentiation schemes
[14–16] that operate at an NA that is �25 times smaller than what we demonstrate here.
Second, the transmission in our design reaches unity at large wavevectors, enabling
close-to-ideal image transformation efficiency, significantly larger than earlier attempts
at realizing image processing metasurfaces.

Next, we use the optimized transfer function to numerically test how well the ideal
2nd–order differentiation is approximated by our realistic metasurface design. To this
end, some simple input functions (see Figure 2.9b-e) are discretized into 1000 pixels and
Fourier transformed. The pixel size ∆x set such that the Nyquist frequency (i.e. the spa-
tial sampling frequency) νn = 1/∆x is equal to kmax/2π where kmax is the maximum kx –
vector that the metasurface can process. This choice ensures that the Nyquist range
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Figure 2.9: Simulated transfer functions of dielectric metasurfaces performing 1st- and 2nd–order spatial dif-
ferentiation. a Transmission amplitude |S21| (solid blue line) and phase arg(S21(kx )) (solid orange line) for
the metasurface optimized for 2nd-derivative operation (sketched in the inset) at λ = 633 nm. The simulated
transfer function is compared to the ideal case (dashed lines). The transmission reference plane is set such
that the transmission phase at normal incidence equals −π. b Rectangular and sinusoidal input functions and
2D image that are used to numerically test the metasurface operation. The signal is discretized into 1000 pix-
els with individual pixel size set such that the Nyquist range matches the operational range in k-space of the
metasurface. c Metasurface output for the input in b. For the 2D image, differentiation is performed line by
line along the x-axis. d-f Same as a-c, but for 1st-derivative operation (metasurface geometry sketched in the
inset) compared to the ideal case (dashed lines) at λ = 711 nm. The transmission reference plane is set such
that the transmission phase at normal incidence is 0.
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In other words, the transmission phase for positive kx values should be phase-shifted by
π compared to that of negative kx values. In order to achieve this asymmetric phase
response, it is necessary to break the unit cell’s mirror symmetry both along the propa-
gation (i.e. z–axis) and transverse (i.e. x–axis) directions. Invoking Lorentz reciprocity,
it is easy to show that breaking the mirror symmetry only along the x–axis is not suffi-
cient (see Figure 2.8a) to generate a transmission response of odd symmetry. Indeed, the
transmission at negative incidence angles (from port 1 to 4) S41 has to be equal to the
transmission from port 4 to 1, i.e. S14, by reciprocity (see Equation (A.9) of Appendix A).
Yet the latter has in turn to be equal to S32 if the symmetry along the z–axis is not also
broken. Thus, at asymmetry along x yet mirror symmetry in z the transmission remains
a symmetric function of kx . This fact can also be observed in simulation as shown in Fig-
ure 2.8b. Adding a residual layer of thickness t below the nanobeams breaks the symme-
try along the z–axis, and thereby provides the odd–symmetry system response required
for odd–order differentiation. Simulations show that the thickness t provides control
over the phase asymmetry (see Figure 2.8b).

2.4. OPTIMIZED TRANSFER FUNCTIONS AND NUMERICAL TESTS
Using the insight gained from the previous paragraph it is possible to design metasur-
faces with specific transfer functions optimized for 1st– and 2nd–order spatial differentia-
tion. Figure 2.9a shows the simulated transmission amplitude |S21| and phase arg(S21) as
a function of the in-plane wave vector kx , normalized by the free space wavevector k0 at
the design wavelength λ= 633 nm for a metasurface composed of dielectric nanobeams
(width w = 182 nm, height h = 123 nm, pitch p = 250 nm and refractive index n = 4 typ-
ical for Si). In this design, optimized to perform 2nd–order differentiation, the angular
response is close in amplitude to the ideal parabolic shape. The phase response shows a
variation of approximately 0.9π, deviating at high angles from the ideal constant phase
response, but still providing a close–to–ideal second derivative response.
Our metasurface design has two key features that distinguish it from earlier designs. First
of all, the metasurface operational numerical aperture is large (NA � 0.35). This fea-
ture enables processing images with high spatial content and hence a resolution close to
the diffraction limit. Moreover, it allows for direct implementation into standard imag-
ing systems with similar NA, for instance by placing the metasurface right in front of
a charge-coupled device (CCD) detector array, without needs for additional imaging
lenses. This is a major advance over previously explored spatial differentiation schemes
[14–16] that operate at an NA that is �25 times smaller than what we demonstrate here.
Second, the transmission in our design reaches unity at large wavevectors, enabling
close-to-ideal image transformation efficiency, significantly larger than earlier attempts
at realizing image processing metasurfaces.

Next, we use the optimized transfer function to numerically test how well the ideal
2nd–order differentiation is approximated by our realistic metasurface design. To this
end, some simple input functions (see Figure 2.9b-e) are discretized into 1000 pixels and
Fourier transformed. The pixel size ∆x set such that the Nyquist frequency (i.e. the spa-
tial sampling frequency) νn = 1/∆x is equal to kmax/2π where kmax is the maximum kx –
vector that the metasurface can process. This choice ensures that the Nyquist range
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Figure 2.9: Simulated transfer functions of dielectric metasurfaces performing 1st- and 2nd–order spatial dif-
ferentiation. a Transmission amplitude |S21| (solid blue line) and phase arg(S21(kx )) (solid orange line) for
the metasurface optimized for 2nd-derivative operation (sketched in the inset) at λ = 633 nm. The simulated
transfer function is compared to the ideal case (dashed lines). The transmission reference plane is set such
that the transmission phase at normal incidence equals −π. b Rectangular and sinusoidal input functions and
2D image that are used to numerically test the metasurface operation. The signal is discretized into 1000 pix-
els with individual pixel size set such that the Nyquist range matches the operational range in k-space of the
metasurface. c Metasurface output for the input in b. For the 2D image, differentiation is performed line by
line along the x-axis. d-f Same as a-c, but for 1st-derivative operation (metasurface geometry sketched in the
inset) compared to the ideal case (dashed lines) at λ = 711 nm. The transmission reference plane is set such
that the transmission phase at normal incidence is 0.
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[−νn ,νn] matches the operational range in k-space of the metasurface and physically
means that the test images are projected onto the metasurface under an NA that matches
that of the metasurface. Once the input function is Fourier transformed, it is multiplied
by the transfer function and finally inverse Fourier transformed (recall Eq. (2.4)).

Figure 2.9c shows the calculated response for rectangular and sinusoidal input func-
tions shown in Figure 2.9b. The metasurface output clearly shows the edges of the rect-
angular input profile and flips the sinusoidal input function as expected. It is also pos-
sible to process arbitrary 2D images by performing the 2nd derivative line by line. The
edges of one of our institutions’ logos are clearly visible in Figure 2.9c. Notice that dif-
ferentiation is performed only along the x-axis for this 1D geometry, hence the edges
along the same direction are not detected. To illustrate the flexibility of the metasurface
image processing concept, Figure 2.9d shows the optimized transmission for a meta-
surface performing 1st–order differentiation, which corresponds to the transfer function
S21(kx ) = i kx in the Fourier domain. In order to achieve such an operation with odd
symmetry in space, we designed an asymmetric metasurface composed of an array of
Si nanobeams with a unit cell (p = 300 nm) consisting of nanobeams with two different
widths (w1 = 48 nm, w2 = 96 nm, h = 165 nm and gap between the nanobeams 53 nm),
placed on a thin silicon layer (thickness t = 35 nm) on a semi-infinite Al2O3 substrate.
As explained earlier, by Lorentz reciprocity, it easy to prove that the unit cell has to be
asymmetric both along the direction of propagation and transversally. Furthermore, the
asymmetry in the phase response of the transfer function can be tuned with t , enabling
the required π phase jump at kx = 0. In this case, the experimental optical constants
(including losses) for the two materials have been used in the simulations[17, 18]. The
simulated transfer function amplitude shows a linear behavior over a wavevector range
up to kx/k0 = 0.1 (6◦), above which it gradually bends away from the ideal case. For large
angles, the transmission saturates below unity due to intrinsic absorption in Si. Fig-
ure 2.9e-f shows the calculated metasurface output for rectangular, parabolic and tri-
angular input functions. The input slope changes and a nearly linear derivative for the
parabola are clearly resolved. Furthermore, processing the logo results in clear detection
of the edges in the x-direction consistently with 1st–derivative operation.

To conclude, the results shown in this Chapter demonstrate the possibility of design-
ing metasurfaces featuring transfer functions that allow even– and odd–symmetric oper-
ations. These optimized design are composed of nanostructures that can be realistically
fabricated and experimentally tested, as shown within next Chapter.
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3.1. FABRICATION

I N order to demonstrate experimentally the concept of performing all–optically math-
ematical operations via metasurfaces, two different samples ought to be fabricated:

the metasurface itself but also the image that is projected onto it. Both sample fabri-
cation procedures involve electron beam lithography (EBL). This technique consists in
scanning a focused electron beam on a surface coated with a layer of e-beam resist, a
particular material that undergoes a change in solubility once exposed. Next, immers-
ing the sample in a solvent will dissolve the exposed areas thus creating a mask for a
successive etching that will eventually define the structure.

Silicon thinning Resist spin-coating EBL exposure

Development RIE Resist removal

Figure 3.1: Fabrication steps needed for the metasurface sample.

Starting with the metasurface fabrication, we opted to fabricate the optimized geometry
for 2nd–order differentiation as this symmetric structure is easier to obtain compared to
the fully asymmetric one optimized for 1st–order differentiation.
The platform used for this sample is Silicon on sapphire (Al2O3). Indeed, high purity c-Si
can be hetero-epitaxially grown on synthetic sapphire wafers and this CMOS technol-
ogy is now well developed and commercially available. Using the experimental indices
for the two materials [1, 2], the optimized dimensions for this design are w = 206 nm,
h = 142 nm, and p = 300 nm with a thin residual Si layer (thickness t = 20 nm) that is
intentionally left between the pillars. This layer is essential to achieve optimum trans-
mission for large wavevectors, as discussed later.
In the following, the detailed fabrication procedure is explained step by step.

• c-Si on Al2O3 substrates were acquired from MTI corp. The c-Si (orientation: (100))
layer is 500 nm–thick, polished (surface roughness < 2.5 nm) and undoped. The
sapphire (orientation: R–plane) substrate is 0.46 mm–thick and double–side pol-
ished (surface roughness < 0.3 nm on front side and optical grade polish on the
back).

• The substrate was cleaned in base piranha and the c-Si was etched to the final
metasurface thickness via Reactive Ion Etching (RIE) using Oxford Instrument’s
PlasmaPro 100 Cobra ICP and a three–step process employing Cl2, HBr and O2.
The first steps is used to remove the native oxide on the Si layer:

3.1. FABRICATION

3

23

Cl2 gas flow 50 [sccm]
pressure 7 [mTorr]
Set temperature 60 [◦C]
RIE forward power 30 [W]
ICP power 750 [W]
time 11 [s]

Next, the system is pumped out for 2 minutes in order to completely remove any
residual Cl2. The third step etches the Si layer:

HBr gas flow 48 [sccm]
O2 gas flow 2 [sccm]
pressure 7 [mTorr]
Set temperature 60 [◦C]
RIE forward power 30 [W]
ICP power 750 [W]
time 89 [s]

The recipe is run first on a dummy wafer to condition the chamber and then on the
actual sample. The etch rate of the entire process is hetched(t ) = 45±18+(3.7±0.24)t
where hetched is the ethced thickness in [nm] and t is the Si–step etch time in [s]
(the Cl2 etch step time is kept constant). The final c-Si thickness is checked with
Filmetrics F20, an optical characterization tool that fits the Fabry–Pérot sample
spectrum to obtain the thickness.
This fabrication step is quite tricky since the actual etch rate depends on the cham-
ber conditions and on other poorly controllable parameters. Moreover, since the
etch time is very long a small fluctuation on the etch rate can cause a relevant
change in the final thickness.

• The substrate was cleaned again in base piranha and a 200 nm-thick layer of CSAR
62 (AR-P 6200, 9% in anisole) positive-tone resist (ALLRESIST GmbH) was spin-
coated at 4000 rpm and baked for 2 minutes at 150◦C.

• Lines were fabricated in the CSAR layer by exposure using a Raith Voyager lithog-
raphy system (50 kV, dose 145–150 µC/cm2) and development in Pentyl–acetate (60
s) and o–Xylene (10 s). One important detail concerning this step is that the nano–
beams have to be aligned along the optical axis of sapphire during e-beam ex-
posure. This is due to the fact that sapphire is a birefringent material and there-
fore has a refractive index that depends on the polarization impinging light. If the
nanobeam arrays are aligned to the optical axis, light polarized along the wires
length experiences only one refractive index.

• The pattern was then transferred into the c-Si by a three-step RIE process employ-
ing Cl2, HBr and O2. The latter, is almost identical to that described previously
except for the ratio between the fluence of O2 and HBr gases. This has an influ-
ence on the slanting of the final structure sidewall and an optimum slanting of
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Figure 3.2: a Metasurface transmission spectrum for different residual thicknesses t. b Metasurface angular
transmission S21 at the wavelength of the minimum for different values of t
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Figure 3.3: Experimental Si metasurface performing 2nd–order spatial differentiation. a Tilted SEM image of
the Si metasurface performing the 2nd–derivative operation. b SEM image of a FIB cross section of the same
metasurface showing the Si nanobeams on an Al2O3 substrate. The scale bar is 400 nm for both panels.

only 20 nm was achieved with 48.7 sccm for HBr and 1.4 sccm for O2.
Again, the etch time is an important parameter as it defines the residual thickness
left in between the nanobeams. This, in turn, influences quite strongly the trans-
mission spectra and the metasurface angular response, as shown in Figure 3.2.

• The sample was finally cleaned in anisole at 65◦C followed by an acid piranha
cleaning.

Figure 3.3 shows the result of the fabrication procedure. The sample are uniform over
large areas (500 µm) with very low sidewall roughness. The FIB cross-section in Fig-
ure 3.3b highlights the low sidewall slanting and the thin (thickness t � 22 nm) Si residual
layer.

3.1. FABRICATION
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Figure 3.4: Fabrication steps needed for the images sample.
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Figure 3.5: a Meisje met de parel, Johannes Vermeer circa 1665, oil on canvas, Mauritshuis, The Hague, Nether-
lands. b An array of suitably sized dots can imitate a gradient c-d Optical microscopy images of the final sam-
ple.

The fabrication procedure just described is an example of a top–down process in which a
nanostructure is carved into a certain material. On the other hand, in order to fabricated
the image samples a bottom–up process is used, as schematically shown in Figure 3.4.
The following steps were performed to fabricate the samples:

• Glass slides (24×24 mm) were cleaned in base piranha.

• A bilayer of MMA (MMA(8.5)MAA EL9, 150 nm) and PMMA (PMMA 950k A8, 95
nm) was spin-coated and baked at 150◦C and 180◦C for 2 minutes respectively. The
thickness of the layers has to be chosen carefully, very thick layers would lift-off
easily in anisole but do not allow high resolution due to beam broadening during
e-beam exposure and excessive MMA undercutting during development.

• The images were fabricated in the resist layer by exposure using Raith Voyager
lithography system (50 kV, dose 550 µC/cm2) and development in MIBK:IPA (1:3 for
90 s).
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• A 40 nm thick Cr layer was evaporated using an in-house built thermal evaporator.

• The residual resist was lifted-off in anisole at 65◦C facilitating the process with an
ultra–sonicator.

Following this procedure, two-tone and gray–tone images were fabricated. To obtain
the gradient effect in the gray–tone image, the famous painting Meisje met de parel (J.
Vermeer, circa 1665) has been discretized into an array of suitably sized Cr disks. The
final result looks homogeneous if low magnification (< 60x) is used in a standard optical
microscope (see Figure 3.5).

3.2. OPTICAL CHARACTERIZATION
The last experimental effort consists in characterizing optically the fabricated samples.
First, the metasurface transfer functions has to be measured. Second, the image process-
ing capabilities are tested by projecting the image sample onto the metasurface. These
two different measurements are performed with two different setups that will be de-
scribed in the following, along with the corresponding results.

3.2.1. INTEGRATING SPHERE
To experimentally determine the transfer function of the metasurface angle–resolved
transmission ought to be measured. The data was collected with a Spectra Pro 2300i
spectrometer equipped with a Pixis 400 CCD. The sample was mounted on a rotating
stage and illuminated with collimated white light from a SuperK EXTREME/FIANIUM
supercontinuum laser. The transmitted light was collected by an integrating sphere
and sent to the spectrometer through a multimode fiber. Light was polarized along the
nanobeams direction.
Figure 3.6a shows the measured transmittance (T = |S21|2) spectra as the incident an-
gle is changed from 0 to 25◦. In agreement with the simulated data in Figure 2.3, the
Fano resonance shifts to shorter wavelengths as the angle is increased. The transmit-
tance minimum is observed at λ = 726 nm for normal incidence and amounts to 2.2%,
the residue attributed to minor fabrication imperfections. Figure 3.6b shows the trans-
mittance as a function of the in-plane wavevector at λ= 726 nm, derived from the data
in Figure 3.6a. The corresponding transmission amplitude (|S21|) derived from the data
is also plotted, along with the ideal parabolic amplitude response.
The overall trend with increasing transmittance as a function of angle is well reproduced
experimentally, with a significant residual transmittance at normal incidence and a max-
imum amplitude at largest angle of 0.84, which is mostly determined by the absorption
in Si. Employing alternative high-index materials could further enhance the transmis-
sion for large angles.

3.2.2. DUIMELIJN FOURIER MICROSCOPE
In order to assess the processing capabilities of the metasurfaces, an image is projected
onto the sample and the outcome is inspected on a CCD camera using the optical setup

Duimelijntje is a fairy tale by the danish writer Hans Christian Andersen (published in 1836) and also the name
given to the setup.

3.2. OPTICAL CHARACTERIZATION

3

27

680 700 720 740 760 780
Wavelength [nm]

0

0.2

0.4

0.6

0.8

1

Tr
an

sm
itt

an
ce

0 0.1 0.2 0.3
kx/k0

0

0.2

0.4

0.6

0.8

1

Tr
an

sm
itt

an
ce

0

0.2

0.4

0.6

0.8

1

|S
21

|

λ=726 nm

λ=726 nm

a b

Figure 3.6: Experimental metasurface transmission. a Measured transmission spectra of the metasurface in
Figure 3.3 as the angle of incidence is increased from 0 (blue line) to 25◦ (yellow line) in 25 steps. b Measured
transmittance (blue line) and corresponding calculated (Transmittance = |S21|2) transmission amplitude |S21|
(orange solid line) as function of incident in-plane wave vector kx/k0 at λ = 726 nm. The dashed orange line
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Figure 3.7: The setup consist of a projection system coupled to a standard microscope with Fourier imaging
capabilities. The dashed line represent the removable Bertrand lens.

in Figure 3.7. The illumination is provided by a SuperK EXTREME/FIANIUM supercon-
tinuum white light laser that is monochromated (1 nm bandwidth) by an Acousto-Optic
Tunable Filter (AOTF) and subsequently coupled to a single mode fiber. The output of
the fiber is collimated by a condenser lens and passed through a spinning diffuser plate
to evenly illuminate the image which is composed of Cr patterns on glass. The diffuser
also serves to remove speckle artefacts in imaging that otherwise occur due to the large
spatial coherence of the source. The image is projected at unit magnification onto the
metasurface by two Olympus MPlanFL N 20x-0.45NA objectives. The second half of the
setup is a standard microscope with Fourier imaging capabilities, already reported in
Ref.[3]: the image is collected by either of two objectives (Nikon Plan Fluor 20X – 0.5NA
and Nikon S Plan Fluor ELWD 60X – 0.7NA) and projected onto a Photometrics Cool-
SNAP EZ silicon CCD camera by a 20 cm focal distance tube lens. In between objective
and tube lens, a 1:1 telescope provides an intermediate real space plane, while flipping
in the Fourier (or Bertrand) lens allows projection of the back focal plane of the objec-
tive directly onto the CCD[4] (Fourier imaging mode, unit magnification from back focal
plane to objective).

This setup also allows transfer function amplitude measurements if the image and the
first objective (from left) are removed and the Bertrand lens is flipped in. Indeed, using



3

26 3. EXPERIMENT

• A 40 nm thick Cr layer was evaporated using an in-house built thermal evaporator.
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Tunable Filter (AOTF) and subsequently coupled to a single mode fiber. The output of
the fiber is collimated by a condenser lens and passed through a spinning diffuser plate
to evenly illuminate the image which is composed of Cr patterns on glass. The diffuser
also serves to remove speckle artefacts in imaging that otherwise occur due to the large
spatial coherence of the source. The image is projected at unit magnification onto the
metasurface by two Olympus MPlanFL N 20x-0.45NA objectives. The second half of the
setup is a standard microscope with Fourier imaging capabilities, already reported in
Ref.[3]: the image is collected by either of two objectives (Nikon Plan Fluor 20X – 0.5NA
and Nikon S Plan Fluor ELWD 60X – 0.7NA) and projected onto a Photometrics Cool-
SNAP EZ silicon CCD camera by a 20 cm focal distance tube lens. In between objective
and tube lens, a 1:1 telescope provides an intermediate real space plane, while flipping
in the Fourier (or Bertrand) lens allows projection of the back focal plane of the objec-
tive directly onto the CCD[4] (Fourier imaging mode, unit magnification from back focal
plane to objective).

This setup also allows transfer function amplitude measurements if the image and the
first objective (from left) are removed and the Bertrand lens is flipped in. Indeed, using
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Figure 3.8: a Fourier space intensity map of light transmitted through the metasurface as the excitation wave-
length is changed. b Average along the y–axis within the dashed box in a. c Image of the metasurface output as
the excitation wavelength is changed. The input image is a slit. d Average along the y–axis within the dashed
box in c.

this configuration, light transmitted through the metasurface under a certain span of
angles (dependent on the objectives’ NA) is imaged in k-space and therefore the ampli-
tude of the metasurface transfer function can also be obtained. However, compared to
the simpler transmission setup described above, normalization of the intensity is much
more difficult and less reliable since it requires realignment and repositioning of the ob-
jectives. For this reasons, while this technique is very insightful and gives information
also for ky �= 0,it is still preferable to use the integrating sphere and a rotating stage to
measure quantitatively the transfer function.

Figure 3.8a shows such not normalized transfer function amplitudes as the excitation
wavelength is scanned across the resonance. The dark blue regions in these colormaps
signal the spatial components that the metasurface is rejecting, either by absorption or
by reflection. As the wavelength is increased, the minima in k–space are moving closer
to normal incidence (�k = 0): only on resonance it is possible to couple to the leaky mode
from normal incidence, while for an off-resonant wavelength also an off-normal inci-
dent excitation is required, as expected from momentum matching. Furthermore, the
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transfer function is completely transforming in a narrow bandwidth going from a low–
pass spatial filter (λ= 710 nm) to an high–pass spatial filter on resonance. At λ= 745 nm
the metasurface is not imparting any modulation in k–space and the Gaussian profile of
light out–coupling from the fiber and scattered evenly from the diffuser is retrieved.

These measurements clearly show the 1D nature of the metasurface operation. In
fact, on resonance low kx spatial components are suppressed also for a wide range of ky .
Hence, the 2nd–order differentiation is experimentally performed in a line-by-line fash-
ion, in agreement with the numerical calculation shown in Figure 2.9 of Chapter 2.
Flipping out the Bertrand lens and inserting the first objective and an image, it is possi-
ble to study the metasurface image processing corresponding to the transfer functions
just discussed (see Figure 3.8c). In this case the image is a simple adjustable slit. At
λ= 710 nm the metasurface is acting as a low–pass filter so the image of the slit is blurred
and the edges are smoothed. On resonance the edges are clearly detected while off-
resonance, for λ = 745 nm, the image of the slit is recovered. The bright spot in Fig-
ure 3.8c is an artefact due to spurious reflection at the interface between air and the
sapphire substrate.

Finally, we experimentally investigate the 2nd–derivative operation of the Si meta-
surface when more complex images are projected onto the sample. We first project the
image of one of our institutions’ logos onto the metasurface using off-resonant illumi-
nation (λ= 750 nm) and then image the metasurface output onto the CCD (Figure 3.9b);
the contrast of the input object is clearly maintained. On the other hand, for resonant
illumination at λ= 726 nm (Figure 3.9c) the edges are clearly resolved in the transformed
image. As expected, no edge contrast is observed for features along the x-direction since
the derivative operation is performed along the same direction.
To study the edge profile in a quantitative manner, Figure 3.9d (red curve) shows a line
profile taken along the horizontal direction in the processed image (red dashed line in
Figure 3.9c). These data are compared to the calculated output profile assuming an ideal
parabolic transfer function (blue curve in Figure 3.9d). Overall the experimental and
ideal response show very similar trends: the double-peaked structure expected for 2nd–
order differentiation is clearly resolved in all of the six edges shown in Figure 3.9d. The
discrepancies between experimental and ideal response are probably due to minor mis-
alignment of the sample inducing small asymmetries in the transfer function.

In conclusion, we demonstrate the use of a Si metasurface for the processing of a
gray–tone image, like the Meisje met de parel described in the previous section. An off-
resonant transmission image through the metasurface is shown in Figure 3.9f; the fine
features and the contrast in the original object are clearly reproduced in the image. In
contrast, the image processed at the resonant wavelength λ= 726 nm clearly shows the
vertical edges along the face contour. The contours are fading away as they become
gradually aligned with the x-axis, as expected. This clearly demonstrates that the meta-
surface image processing concept can be applied to more complex images containing
gradients in transmission.
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Figure 3.8: a Fourier space intensity map of light transmitted through the metasurface as the excitation wave-
length is changed. b Average along the y–axis within the dashed box in a. c Image of the metasurface output as
the excitation wavelength is changed. The input image is a slit. d Average along the y–axis within the dashed
box in c.

this configuration, light transmitted through the metasurface under a certain span of
angles (dependent on the objectives’ NA) is imaged in k-space and therefore the ampli-
tude of the metasurface transfer function can also be obtained. However, compared to
the simpler transmission setup described above, normalization of the intensity is much
more difficult and less reliable since it requires realignment and repositioning of the ob-
jectives. For this reasons, while this technique is very insightful and gives information
also for ky �= 0,it is still preferable to use the integrating sphere and a rotating stage to
measure quantitatively the transfer function.

Figure 3.8a shows such not normalized transfer function amplitudes as the excitation
wavelength is scanned across the resonance. The dark blue regions in these colormaps
signal the spatial components that the metasurface is rejecting, either by absorption or
by reflection. As the wavelength is increased, the minima in k–space are moving closer
to normal incidence (�k = 0): only on resonance it is possible to couple to the leaky mode
from normal incidence, while for an off-resonant wavelength also an off-normal inci-
dent excitation is required, as expected from momentum matching. Furthermore, the
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transfer function is completely transforming in a narrow bandwidth going from a low–
pass spatial filter (λ= 710 nm) to an high–pass spatial filter on resonance. At λ= 745 nm
the metasurface is not imparting any modulation in k–space and the Gaussian profile of
light out–coupling from the fiber and scattered evenly from the diffuser is retrieved.

These measurements clearly show the 1D nature of the metasurface operation. In
fact, on resonance low kx spatial components are suppressed also for a wide range of ky .
Hence, the 2nd–order differentiation is experimentally performed in a line-by-line fash-
ion, in agreement with the numerical calculation shown in Figure 2.9 of Chapter 2.
Flipping out the Bertrand lens and inserting the first objective and an image, it is possi-
ble to study the metasurface image processing corresponding to the transfer functions
just discussed (see Figure 3.8c). In this case the image is a simple adjustable slit. At
λ= 710 nm the metasurface is acting as a low–pass filter so the image of the slit is blurred
and the edges are smoothed. On resonance the edges are clearly detected while off-
resonance, for λ = 745 nm, the image of the slit is recovered. The bright spot in Fig-
ure 3.8c is an artefact due to spurious reflection at the interface between air and the
sapphire substrate.

Finally, we experimentally investigate the 2nd–derivative operation of the Si meta-
surface when more complex images are projected onto the sample. We first project the
image of one of our institutions’ logos onto the metasurface using off-resonant illumi-
nation (λ= 750 nm) and then image the metasurface output onto the CCD (Figure 3.9b);
the contrast of the input object is clearly maintained. On the other hand, for resonant
illumination at λ= 726 nm (Figure 3.9c) the edges are clearly resolved in the transformed
image. As expected, no edge contrast is observed for features along the x-direction since
the derivative operation is performed along the same direction.
To study the edge profile in a quantitative manner, Figure 3.9d (red curve) shows a line
profile taken along the horizontal direction in the processed image (red dashed line in
Figure 3.9c). These data are compared to the calculated output profile assuming an ideal
parabolic transfer function (blue curve in Figure 3.9d). Overall the experimental and
ideal response show very similar trends: the double-peaked structure expected for 2nd–
order differentiation is clearly resolved in all of the six edges shown in Figure 3.9d. The
discrepancies between experimental and ideal response are probably due to minor mis-
alignment of the sample inducing small asymmetries in the transfer function.

In conclusion, we demonstrate the use of a Si metasurface for the processing of a
gray–tone image, like the Meisje met de parel described in the previous section. An off-
resonant transmission image through the metasurface is shown in Figure 3.9f; the fine
features and the contrast in the original object are clearly reproduced in the image. In
contrast, the image processed at the resonant wavelength λ= 726 nm clearly shows the
vertical edges along the face contour. The contours are fading away as they become
gradually aligned with the x-axis, as expected. This clearly demonstrates that the meta-
surface image processing concept can be applied to more complex images containing
gradients in transmission.
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Figure 3.9: Experimental 2nd–order image differentiation. a Optical microscopy image of the input object; the
scale bar is 20µm b-c Optical microscopy image of the metasurface output for resonant (λ= 726 nm) and off-
resonant (λ= 750 nm) illumination. d Cross-cut through b (red line) averaged over 8 pixels along y, compared
to ideal differentiation performed on the off-resonant image (blue line). e Optical microscopy image of the
Meisje met de parel (J. Vermeer, circa 1665). The image is composed of micron-sized dots of Cr on glass. f-
g Metasurface output for resonant and off-resonant excitation. The black spot in g covers an artefact due to
spurious reflection at the interface between air and the sapphire substrate.
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CONCLUSION

T HE field of all–optical analog computing gained a lot of attention in the past and
seemed for quite some time a promising alternative to standard electronic comput-

ing. However, as Moore’s law kicked in, optical processors became quickly obsolete and
were overwhelmed by what we nowadays mean by “computers”.
The tremendous advances in nano–lithography the boosted the number of transistors
per unit area played also a crucial role in the much younger field of Nanophotonics.
Metamaterials, metasurfaces, photonic crystals, plasmonics and micro–resonators have
demonstrated the possibility of molding the flow of light with unprecedented precision.
From this perspective, optical analog computing is still an uncharted territory and the
impact of Nanophotonics on this field can be groundbreaking.

In this context, the work presented in this thesis demonstrates how dielectric meta-
surfaces sustaining Fano resonances with suitably engineered dispersion can be designed
to impart transfer functions in momentum space that correspond to 1st– and 2nd–order
spatial differentiation. We showed that the ideal amplitude and phase transfer functions
can be approximated over a relatively wide range of input angles spanning a numerical
aperture up to 0.35 and that transmission over 0.8 can be achieved for large angles. The
deviations from the ideal transfer functions, which are intrinsic to the design, are small
enough to still achieve derivative operations close to 1st– and 2nd–derivative.
Furthermore, we experimentally demonstrated the metasurface optical processing using
a suitably designed sub-wavelength array of Si nanobeams, showing clear edge detection
as a result of the 2nd–order spatial differentiation and a significant agreement with the
ideal response.

OUTLOOK
The results showed in this thesis can lead to a wide range of applications and can open
new opportunities in hybrid optical and electronic computing that operates at low cost,
low power and small dimensions. Future research directions could include:

• Demonstration of other mathematical operations including integration and con-
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• Demonstration of other mathematical operations including integration and con-
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volutions with specific functions. Also, the case of 1st–order spatial differentiation
has still to be experimentally proved. This, in turn, would require upgrades to the
setup described in Section 3.2.2 targeting phase measurements in order to assess
the asymmetric phase response of odd operations.

• Design and performance improvement employing membranes and lossless di-
electrics. The use of membranes could potentially remove the spurious bright spot
due to reflection at the air–sapphire interface. Moreover, the use of lossless dielec-
tric materials could boost the transmission at large k–vectors to unity, therefore
enabling the ultimate processing efficiency.

• Theoretical and experimental demonstration of metasurfaces capable of perform-

ing 2D operations like ∇2 = ∂2

∂x2 + ∂2

∂y2 . In practical applications, this can be an

interesting opportunity as all the edges would be detected regardless the orienta-
tion.

• Design and fabrication of optically and electrically switchable metasurfaces. The
use of carrier-induced refractive index changes in ITO and optically-induced non-
linearity in Si might lead to change in the transfer function that could switch the
operation of choice. In addition, Si-based MEMS metasurface geometries that can
be electrically actuated will also be taken into consideration.

• The implementation of analog recursive operations. By looping back the pro-
cessed images onto the original image plane, subsequent mathematical opera-
tions can be achieved hinting at the dream of an optical computer.

• Metasurface dimensions and fabrication throughput scaling–up via Soft Confor-
mal Imprint Lithography (SCIL). A silicon master pattern is made with electron-
beam lithography and reactive ion etching, from which a soft double-layer PDMS
stamp is molded. This stamp can be reused many times to pattern silica sol-gel
masks for reactive ion etching. In this way, centimeter–sized metasurfaces can be
readily replicated.

Object

Real inverted 
image

CCD

Computing metasurface

Figure 4.1: Ray diagram for a standard imaging system. The metasurface can be placed directly on the imaging
sensor (CCD).
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• Device integration. As our metasurface design operates in the image plane of the
object and not in the Fourier plane it can be placed directly onto the CCD chip, as
shown in Figure 4.1. This can lead to a wide range of applications and can readily
be implemented in combination with standard CMOS technology.

To conclude, these and other opportunities will be explored in the near future at AMOLF
(Amsterdam) in close collaboration with the group of Prof. Andrea Alù at ASRC (New
York).
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APPENDIX

This appendix contains the omitted calculations of Chapter 2. Specifically, the scattering
matrix formalism and the Coupled-mode-theory model used are shown in a step by step
fashion.

A.1. SCATTERING MATRIX FORMALISM
Light interaction with a generic optical system may be described by a set of linear equa-
tions which relate incident, transmitted and reflected wave amplitudes. These linear re-
lationships define a matrix called scattering matrix or S−matrix. In particular, it relates
the outgoing complex wave amplitudes s− to the incoming complex wave amplitudes
s+. For a two ports configuration1

(
s1−
s2−

)
=

(
S11 S12

S21 S22

)(
s1+
s2+

)
↔ s− = Ss+ (A.1)

where the complex wave amplitudes are defined and normalized such that, for example,
|s1+|2 is the power per unit area incident on the the system

s1+ =
√

cn0ε0

2
E1+ (A.2)

with analogous definitions for the remainder components of the vectors s− and s+. Gen-
eral requirements such as energy conservation, reciprocity and time reversibility con-
strain the matrix elements of S [3].
First, if the system is lossless all the energy pumped into the system has to go out. Hence
power conservation implies

|s1+|2 +|s2+|2 = |s1−|2 +|s2−|2 ↔ s†
+s+ = s†

−s− (A.3)

Parts of this chapter have been re-adapted from Refs.[1, 2].
1It is straightforward to generalize this to a m port system using a M×M scattering matrix
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and using s− = Ss+

s†
+s+ = s†

+S†Ss+ → s†
+s+−s†

+S†Ss+ = 0 (A.4)

→ s†
+

[
I−S†S

]
s+ = 0 ∀s+ =⇒ S†S= I (A.5)

where I is the identity matrix. The constraint implied by unitarity on the matrix elements
are





|S11|2 +|S12|2 = 1
|S22|2 +|S21|2 = 1
S∗

11S12 +S∗
21S22 = 0

Another property that holds for lossless media is time reversibility. To show its implica-
tions on the S−matrix elements the complex conjugate of (A.1) is taken

s∗− = S∗s∗+ (A.6)

The complex wave amplitudes s∗− may be interpreted as time reversed out-going wave
amplitudes thus incoming wave amplitudes (s∗− → s+) and the same reasoning applies
for s∗− (i.e. s∗+ → s−). With these substitutions (A.1) becomes

s+ = S∗s− → s− = [
S∗]−1 s+ (A.7)

Comparing this last equation with (A.1) yields

[
S∗]−1 = S or S∗ = S−1 (A.8)

This condition together with the first discussed property S† = S−1 leads to

S� = S (A.9)

This same result can be obtained also from the reciprocity principle for an isotropic
medium. Therefore time reversibility and power conservation imply reciprocity [3].

A.2. COUPLED MODE THEORY
The Coupled Mode Theory (CMT) formalism is very powerful in describing the behavior
of a resonator coupled to input and output ports. This theory has been developed mainly
by Hermann Haus [3] and further refined by Shanhui Fan et al.[4]. Moreover, it enables
the possibility of calculating the transmission of an optical system by modeling its inter-
action with incoming light through a direct process and a resonant process. Thus, it is a
valuable tool to model guided–mode–resonances.

The first step consists in defining the optical system and the output and input planes.
Hence, suppose our resonant structures (nanopillars or nanowires) are enclosed inside
a "black box" simply stating that the complex field inside the box is u (normalized such
that |u|2 is the energy stored within the box due to the resonance) and that this sys-
tem has a certain resonance frequency ω0. In our case the latter is a guided–mode–
resonance, however within the frame of CMT there is no need to further specify the na-
ture of the resonance.
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The outgoing wave amplitudes s− are the result both of the box’s leakage and of the ac-
tion of a scattering matrix C, which would describe the system if the resonances were
turned off, to the incoming wave amplitudes s+

s− =C s++u d (A.10)

where d = (d1,d2)� is a vector of coupling coefficients. As mentioned in Chapter 2, the
direct process is modeled by the interaction of light with a dielectric slab of index neff =
[(1−F )n2

0 +F n2]1/2 (with n = 4) in air (n0 = 1) where F is the structure fill-factor[5]. Thus
in our model (A.10) reads

(
s1−
s2−

)
=

(
r t
t r

)(
s1+
0

)
+u

(
d1

d2

)
(A.11)

where r and t are the Fresnel coefficients for a Fabry-Pérot etalon of thickness d equal
to the height of the metasurface

r = r1 + r2e−2iδ

1+ r1r2e−2iδ
t = t1t2e−iδ

1+ r1r2e−2iδ
(A.12)

r1, r2, t1, t2, are the standard Fresnel reflection and transmission coefficients for the two
slab interfaces and δ= (2π/λ)neff d cosθ1 (θ1 is the angle at which light is refracted inside
the slab in case of not normal incidence).
Equation (A.11) shows clearly that the output of the optical system is the sum of a direct
process (first product in the right-hand side) and a resonant process (second product in
the right-hand side). Notice that s2+ is zero since no light is coming from the substrate.

Coupled to (A.11), another equation is needed to describe the complex field inside
the system

du

d t
= (

iω0 −γ
)

u +κ1s1+ (A.13)

being γ the radiative leakage and κ1 the coupling coefficient for s1+ pumping the res-
onator2. In the frequency domain d

d t → iω· therefore, from (A.13)

iωu = (
iω0 −γ

)
u +κ1s1+ → u = κ1s1+

i (ω−ω0)+γ
(A.14)

The product of (A.11) leads instead to

{
s1− = r s1++ud1

s2− = t s1++ud2

Using the second equation of this system and (A.14) it is straightforward to write the
following expression for s2−

s2− = t s1++ d2κ1s1+
i (ω−ω0)+γ

(A.15)

2κ1 is the first component of the vector κ of coupling coefficients
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and to define the quantity

S21 = s2−
s1+

= t + d2κ1

i (ω−ω0)+γ
(A.16)

This last quantity is of great importance in our derivation since the transmittance of the
whole system is T = |S21|2 as can be noted recalling the definitions of s− and s+. How-
ever, (A.16) is not our final result. Indeed, the coupling coefficients showing in the last
equation cannot be unbound since the reflection itself is bound to be T � 1. Actually
they are constrained by the direct pathway through these properties [4, 6, 7]

d†d = 2γ (A.17)

κ= d (A.18)

C d∗ =−d (A.19)

where C is a generic scattering matrix describing the direct pathway and γ is the sum of
the leakage rates into the ports.
These properties3 and those previously discussed regarding the S−matrix will be of great
use in further refining the expression obtained for S21. Indeed, applying (A.18) to (A.16)
and exploiting the mirror symmetry of the problem (d1 = ±d2, the sign being chosen
according to the even or odd symmetry of the resonant mode)[4]

S21 = t ± d 2
1

i (ω−ω0)+γ
(A.20)

Furthermore, (A.17) and (A.19) will enable the possibility of deducing an expression for
d 2

1 . In our case C d∗ =−d reads

(
r t
t r

)(
d∗

1
±d∗

1

)
=−

(
d1

±d1

)
(A.21)

and performing the product the following expression for d1 is extracted

d∗
1 (r ± t ) =−d1 (A.22)

next, multipling the latter for d1 and using (A.17)

d 2
1 =−(r ± t )γ (A.23)

Hence, the final expression used in Chapter 2 for the transmission S21 is

S21 = t ± −(r ± t )γ

i (ω−ω0)+γ

Before moving on, it is worth commenting this last result. This relatively simple equa-
tion elegantly embodies the intuitive working principle of our structure and highlights

3The detailed proofs will be discussed in the next section
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the origin of the Fano asymmetric lineshape. The quantity S21 is evidently the sum of
two terms: t is simply the Fresnel coefficient for a dielectric slab and plays the role of
the direct pathway mentioned earlier while the second term is due to the resonant be-
havior displayed by our structure and hence is referred to as resonant pathway. Further-
more, the direct path itself contains the resonant path (A.23) as a consequence of the
constraints imposed ultimately by fundamental concepts such as energy conservation
and time-reversal symmetry.
Since the two terms appearing in S21 are complex numbers, it is important to study their
relative phase difference to understand how that influences the shape parameter, as dis-
cussed in Chapter 2.

A.2.1. PROOFS OF PROPERTIES (A.17) - (A.19)
For ease of notation the properties above will be proved for a single port resonator and
then generalized. Hence (A.11) and (A.13) become

du

d t
= (

iω0 −γ
)

u +κs1+ (A.24)

s1− =C s1++du (A.25)

where C is now a number and γ is the leakage into the only port.

Proof. dd∗ = 2γ
Suppose that the incoming wave amplitudes are turned off (s1+ = 0). Using (A.24)

d |u|2
d t

= duu∗

d t
= u

du∗

d t
+u∗ du

d t
=

= u
[
(−iω0 −γ)u∗]+u∗ [

(iω0 −γ)u
]=

=−iω0|u|2 −γ|u|2 + iω0|u|2 −γ|u|2 =−2γ|u|2

=⇒ d |u|2
d t

=−2γ|u|2

Since |u|2 is the energy stored inside the resonator and given the definition of s1−, power
conservation implies

d |u|2
d t

=−|s1−|2 =−|d |2|u|2 =−dd∗|u|2

=⇒ d |u|2
d t

=−dd∗|u|2

Looking at both the results it is clear that dd∗ = 2γ.

Proof. κ= d
Again, if the incoming wave amplitudes are turned off (s1+ = 0) it is straightforward to
give a solution for (A.24)

{ du
d t = (

iω0 −γ
)

u
s1− = du

→
{

u = Ae(iω0−γ)t

s1− = d Ae(iω0−γ)t
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whole system is T = |S21|2 as can be noted recalling the definitions of s− and s+. How-
ever, (A.16) is not our final result. Indeed, the coupling coefficients showing in the last
equation cannot be unbound since the reflection itself is bound to be T � 1. Actually
they are constrained by the direct pathway through these properties [4, 6, 7]

d†d = 2γ (A.17)

κ= d (A.18)

C d∗ =−d (A.19)

where C is a generic scattering matrix describing the direct pathway and γ is the sum of
the leakage rates into the ports.
These properties3 and those previously discussed regarding the S−matrix will be of great
use in further refining the expression obtained for S21. Indeed, applying (A.18) to (A.16)
and exploiting the mirror symmetry of the problem (d1 = ±d2, the sign being chosen
according to the even or odd symmetry of the resonant mode)[4]

S21 = t ± d 2
1

i (ω−ω0)+γ
(A.20)

Furthermore, (A.17) and (A.19) will enable the possibility of deducing an expression for
d 2

1 . In our case C d∗ =−d reads

(
r t
t r

)(
d∗

1
±d∗

1

)
=−

(
d1

±d1

)
(A.21)

and performing the product the following expression for d1 is extracted

d∗
1 (r ± t ) =−d1 (A.22)

next, multipling the latter for d1 and using (A.17)

d 2
1 =−(r ± t )γ (A.23)

Hence, the final expression used in Chapter 2 for the transmission S21 is

S21 = t ± −(r ± t )γ

i (ω−ω0)+γ

Before moving on, it is worth commenting this last result. This relatively simple equa-
tion elegantly embodies the intuitive working principle of our structure and highlights

3The detailed proofs will be discussed in the next section
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the origin of the Fano asymmetric lineshape. The quantity S21 is evidently the sum of
two terms: t is simply the Fresnel coefficient for a dielectric slab and plays the role of
the direct pathway mentioned earlier while the second term is due to the resonant be-
havior displayed by our structure and hence is referred to as resonant pathway. Further-
more, the direct path itself contains the resonant path (A.23) as a consequence of the
constraints imposed ultimately by fundamental concepts such as energy conservation
and time-reversal symmetry.
Since the two terms appearing in S21 are complex numbers, it is important to study their
relative phase difference to understand how that influences the shape parameter, as dis-
cussed in Chapter 2.

A.2.1. PROOFS OF PROPERTIES (A.17) - (A.19)
For ease of notation the properties above will be proved for a single port resonator and
then generalized. Hence (A.11) and (A.13) become

du

d t
= (

iω0 −γ
)

u +κs1+ (A.24)

s1− =C s1++du (A.25)

where C is now a number and γ is the leakage into the only port.

Proof. dd∗ = 2γ
Suppose that the incoming wave amplitudes are turned off (s1+ = 0). Using (A.24)

d |u|2
d t

= duu∗

d t
= u

du∗

d t
+u∗ du

d t
=

= u
[
(−iω0 −γ)u∗]+u∗ [

(iω0 −γ)u
]=

=−iω0|u|2 −γ|u|2 + iω0|u|2 −γ|u|2 =−2γ|u|2

=⇒ d |u|2
d t

=−2γ|u|2

Since |u|2 is the energy stored inside the resonator and given the definition of s1−, power
conservation implies

d |u|2
d t

=−|s1−|2 =−|d |2|u|2 =−dd∗|u|2

=⇒ d |u|2
d t

=−dd∗|u|2

Looking at both the results it is clear that dd∗ = 2γ.

Proof. κ= d
Again, if the incoming wave amplitudes are turned off (s1+ = 0) it is straightforward to
give a solution for (A.24)

{ du
d t = (

iω0 −γ
)

u
s1− = du

→
{

u = Ae(iω0−γ)t

s1− = d Ae(iω0−γ)t
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where A is a constant. As expected, the energy stored inside the resonator decays with
time as does the amplitude of the outgoing wave s1−. Next, a time-reversal transforma-
tion is performed

{
u(t ) → u∗(−t )
s1−(t ) =→ s∗1−(−t )

→
{

u∗ = A∗e(iω0+γ)t

s∗1− = d∗A∗e(iω0+γ)t

In this new configuration an exponentially growing incoming wave amplitude is building-
up the energy stored from 0 at t =−∞ to |A|2 at t = 0.
The coupled equations describing this new situation are

du∗

d t
= (

iω0 −γ
)

u∗ +κs∗1− (A.26)

0 =C s∗1−+du∗ (A.27)

in a similar manner as done previously to obtain (A.14), from these last two equation

u∗ = κs∗1−
i (ω−ω0)+γ

(A.28)

The complex field u∗ is driven by s∗1− at a frequency ω0 and with an amplitude growing
at the rate γ. Thus the complex frequency of the drive is ω̃=ω0+iγ and also the complex
field u∗ will have the same

u∗(ω̃) = κs∗1−
i (ω0 − iγ−ω0)+γ

= κs∗1−
2γ

= κd∗u∗

2γ

→ u∗ = κd∗u∗

2γ
=⇒ 1 = κd∗

2γ

where s∗1− = d∗u∗ has been used 4. From this last result it follows that κd∗ = 2γ and
exploiting the property proved earlier dd∗ = 2γ it is evident that κ= d

Proof. C d∗ =−d
Starting from the time-reversed situation discussed above, notice that no outgoing wave
shall occur i.e.

0 =C s∗1−+du∗

exploiting again s∗1− = d∗u∗ the property is proved

0 =C d∗u∗ +du∗ ∀u =⇒ C d∗ =−d

The three properties just shown can be generalized for a multi-port resonator ob-
taining (A.17), (A.18) and (A.19). In particular (A.17) for m ports is equivalent to

d∗
1 d1 +d∗

2 d2 + . . . d∗
mdm =

∑
i
γi = γ

4Notice that this substitution is valid only at t=0. In fact, s∗1− is a function growing from 0 at t =−∞ to d∗A∗ at
t = 0 while s1− is decreasing from d A at t = 0 to 0 at t =+∞. Thus s∗1− is the complex conjugate of s1− only at
t=0
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being γi the leakage into port i . Further, from the equation above it can be set

d∗
1 d1 = γ1

d∗
2 d2 = γ2

. . .

d∗
mdm = γm
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