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SUPPLEMENTAL INFORMATION 

Sample fabrication 

Silicon nanopillars were fabricated on 10-nm-thick free standing Si3N4 membranes (Norcada, Fig. S1). We 

start with epitaxial liftoff of a 200-nm-thick single-crystalline intrinsic Si film from a silicon-on-insulator 

(SOI) wafer in 52% HF solution1,2,3. The SiO2 layer was etched (lateral etching rate ~ 300 nm/s), leaving the 

silicon film floating on top of the HF solution. The Si film is then transferred from the HF solution to water 

(this process was repeated until the HF was cleaned away) and subsequently placed onto a 10-nm-thick 

Si3N4 membrane, which was surface-cleaned by a Nanostrip solution (90% sulfuric acid, 5% 

peroxymonosulfuric acid, <1% hydrogen peroxide, 5% water). The wet transferred film and the membrane 

substrate were then left to dry at an inclined angle, followed by Nanostrip cleaning of the Si film surface. 

A 100-nm-thick layer of electron beam resist (Diluted ZEP-520A; Zeon chemicals; anisole:ZEP520 volume 

ratio 1.3:1) was then spin-coated on the Si film (4000 rpm) to produce a 100-nm-thick film.  
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Figure S1. Schematic of preparation of photonic lattices composed of Si nanopillars on a 10-
nm-thick free-standing Si3N4 membrane. 

After lithographically defining a pattern using a 100 keV electron beam (Raith EBPG5200), the electron 

beam resist was developed (ZED-N50, Zeon Chemicals); the remaining resist was treated by electron beam 

irradiation at 2 keV with a dose of 500 C/m2. This step is essential for high-quality pattern transfer during 

reactive ion etching, since cross-linking of the resist on the pattern edge is significantly improved. Then 

the pattern was transferred into the Si layer via reactive ion etching (Oxford Instruments System 100 ICP 

380, mixture of C4F8 and SF6 gases; 23 W RF generator forward power, 1200 W ICP generator forward 

power, 27 sccm SF6, 52 sccm C4F8) and the remaining etch mask was removed by O2 plasma cleaning. SEM 

images of the fabricated structure are shown in Fig. 1c,d. Since we are using a positive resist, an inverse 

pattern with hole diameter of 118 nm was written. The final pillars dimensions are 90 nm in diameter and 

200 nm in height for electron beam dose of 260 μC/cm2. For electron beam dose of 250 μC/cm2, the pillars 

are 85 nm in diameter and 200 nm in height.  

There are several advantages of our fabrication method. Firstly, a 10-nm-thick membrane has minimal 

influence on the dielectric environment of the dielectric resonator, preserving its intrinsic optical 

properties. Secondly, the free standing 10-nm-thick Si3N4 membrane is almost transparent for the electron 

beam, therefore reducing both charging and incoherent defect luminescence compared to a thick 

substrate, making it an ideal platform to study subtle photonic features by electron excitation. 

Band structure dispersion 

In Fig. S2a the dispersion data derived from Fig. 2b are overlaid with the simulations and show good 

agreement. A broad collection of low-Q guided modes is observed with high-Q flat bands within the Dirac 

cone representing the Mie resonances. In Fig. S2b we plot the (zone-folded) dispersion bands of TM 
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surface modes with an effective mode index n=1.05 (obtained by fitting Fig. 2b with k=nk0); they 

correspond well to the simulated data. 

 

Figure S2. Band structure dispersion. (a) Experimental angle-resolved CL data. (b) Same as 
(a), overlaid with numerically simulated band diagram for the photonic lattice with two 
hexagonal pillars for the unit cell in Fig. 2 (colored dots). The quality factor Q of the modes is 
indicated by the color scale. (c) Same simulated data as in (b) with fit to experimental data 
from diffractive outcoupling model using a TM surface mode with mode index n=1.05 (black 
lines). 

 

Cathodoluminescence 

Cathodoluminescence spectroscopy was carried out using a 30 keV electron beam in a ThermoFisher 

Scientific/FEI Quanta 650 SEM equipped with a Delmic SARC system for cathodoluminescence collection 

and analysis. Light emitted by the sample was collected by a half-parabolic mirror placed between the 

sample and the electron column, with a focus on the sample of 20 m. Collected light was either guided 

to a spectrometer for spectral analysis to make spatial maps, or projected onto a CCD imaging camera for 

angular analysis (see Fig. 1b). The parabolic mirror contains a hole for the electrons to go through. This 

hole spans an angle of 6.9°. For a horizontally placed sample, this hole hinders collection of light emitted 

along the Γ-point. To probe the bandgap of the topological photonic crystals at the Γ-point, we put the 

sample under an angle of 7.5° for the data presented in Fig. 4 of the main text. Light emitted normal to 

the sample can then be collected. To avoid electron-induced background CL from the sample holder, we 

drilled a hole through the sample holder underneath the sample. 

Confocal microscopy measurements 

Confocal transmission measurements were performed using a WiTec 300 confocal microscope. A fiber-

coupled tungsten broadband light source (Thorlabs SLS202L) was used to illuminate the sample from the 

bottom. A 10 objective (Zeiss, numerical aperture: 0.2) was used to weakly focus the light into a 
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homogeneous spot larger than the patterned area. Light transmitted by the sample was collected with a 

50 objective (Zeiss, numerical aperture: 0.7) and coupled into a 25 m core collection fiber that 

functioned as the confocal pinhole, and analyzed using a spectrometer (300 lines/mm, spectral resolution 

of 0.27 nm). The signal was normalized to the transmission of an uncovered Si3N4 membrane. 

Numerical simulations 

First-principle simulations were performed using full-wave finite-element-solver COMSOL Multiphysics 

(RF Module). For bulk band structure calculations in Figs. 3, the periodic boundary conditions were 

imposed along the boundaries of the unit cell, and perfectly matched layer (PML) boundary conditions 

were applied perpendicular to the surface of the sample. Dimensional sizes of the structure are the same 

as the ones used for the fabricated sample. Optical constants for Si were taken from Ref. 4. 
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