
1 

 

Supporting Information 

Dual-Polarization Analog 2D Image Processing with Nonlocal Metasurfaces 

 
Hoyeong Kwon1, Andrea Cordaro,2,3 Dimitrios Sounas,4 Albert Polman,3 and Andrea Alù1,5,6,7* 

1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA 

2Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH 

Amsterdam, The Netherlands  

3Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands 

4Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA 

5Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA 

6Physics Program, Graduate Center, City University of New York, New York, NY, USA 

7Department of Electrical Engineering, City College of The City University of New York, NY, USA 

*aalu@gc.cuny.edu 

 

The purpose of this supporting information is to explain the theoretical foundations of our paper 

and provide further details that are not explained in the paper. 

 

1. Nonlocality of Fano resonance  

The key idea behind our design is to use the nonlocality of the Fano resonance, which 

realizes a certain system response as a function of spatial Fourier components. By 

engineering the coupling weights within the Fano resonance, the metasurface supports 

different spatial frequency resolutions or different types of operations. Here, we describe 

the Fano resonance by considering the coupling between two resonance systems and 

analyze how to engineer the transfer function of the metasurface by controlling the 

coupling coefficient of a discrete state 𝑞, and a system energy with respect to the transverse 

momentum 𝑘∥ = 𝑘0 sin 𝜃, as shown below. [1],[2]  

 

|𝑇(𝑘∥)| =
(𝜀(𝑘∥)+𝑞)

2

𝜀(𝑘∥)
2
+1

 .       (S1) 

 

Here, 𝜀(𝑘∥) defines how largely the frequency of the impinging wave is detuned from the 

resonance frequency of the system as, 𝜀(𝑘∥) = 2(𝜔 − 𝜔0(𝑘∥)) Γ⁄ , where Γ is the linewidth 

of the Fano shape and 𝜔0(𝑘∥) is the resonance frequency that is dispersive to the incident 

angle 𝜃. [1]  



2 

 

In Fig. S1, we show that the Fano line shape can be controlled with the coupling coefficient 

𝑞, where the asymmetric transmission profile is achieved with 𝑞 = 1. This asymmetric 

shape disappears and turns to symmetric shape when 𝑞 is detuned to 0 or ∞, where one of 

two resonant modes is dominant to another mode. 

 

 
Figure. S1. The transmission of the Fano resonance when 𝑞 = 0, 1, and 100. 

 

 
 

Figure. S2. Transmission amplitude of co-polarized light over a broad frequency range 

and angular spectrum. For both s- and p-polarizations, the metasurface achieves the 2nd-

order differential operation at 𝜆 = 643nm. The top figures are the results when the light is 

illuminated from 𝜙 = 0° , and the bottom figures are the results when the light is 

illuminated from 𝜙 = 30°.  
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As mentioned in the main text, in this study, the metasurface induces a Fano resonance by 

coupling the leaky wave mode from the lattice and the background Fabry-Perot resonance 

from the thickness of the metasurface. By exciting leaky wave resonance, the frequency of 

Fano resonance is directly related to the resonance frequency of the discrete state as 𝑘⃗ ∥ +

𝑘⃗ 𝑟 . This implies that the spatial dispersion of the Fano resonance can be dominantly 

engineered to be faster or slower in the incident angular spectrum with a proper engineering 

of the lattice periodicity 𝑎 in the metasurface. [3] 

 

Fig. S2 shows the numerically calculated transmission in a broad wavelength range and 

wide angular spectrum regarding the metasurface in Fig. 1b, where the material loss is not 

considered in the calculation. Supported by the lattice symmetry in the transverse direction, 

the metasurface supports strong nonlocality both at 𝜙 = 0° and  𝜙 = 30° modulating the 

transmission at the incident angular spectra, where at the resonance wavelength of normal 

incidence, the metasurface supports the 2nd-order differential operation, as shown in the 

inset figures. Spatial dispersion of this angular dependence can be engineered with the 

coupling coefficient 𝑞 based on the theoretical analysis in Eq. (S1), where the practical 

analysis with the geometry of the metasurface is provided in Section 3. 

  

 

2. Spatial frequency resolution – NA 

When a 2D optical input image is illuminated from the far field, the field can be expressed 

as a collection of different transverse momentums as 𝐸⃗ 𝑖𝑛(k⃗ ∥) = ∑ 𝐸⃗ 0(k⃗ ∥)exp{−𝑗(k⃗ ∥ ∙
𝑘𝑚𝑎𝑥
𝑘∥=0

r ∥)} . If the input image is projected onto a metasurface that supports a specific 

mathematical operation with transfer function  𝑇̿(𝑘⃗ ∥), each spatial component of the input 

image is modulated by the transmission components ‘on-the-fly’ through the metasurface. 

Fig. S3a describes the relationship between the transverse momentum of the input signal 

and the system function of the metasurface. Here, the transmission is a 2 × 2 tensor, which 

describes the responses of s- and p-polarized input signals. Then, the output image after 

the metasurface is derived as a sum of transverse momentums and represented as 

𝐸⃗ 𝑜𝑢𝑡(k⃗ ∥) =  ∑ 𝑇̿(𝑘⃗ ∥) ∙ 𝐸⃗ 0(k⃗ ∥)exp{−𝑗(k⃗ ∥ ∙ r ∥)} 
𝑘𝑚𝑎𝑥
𝑘∥=0

in spatial frequency domain. The 

transmission is calculated orthogonally with each electric field component, as described in 

the main text.  

 

The spatial frequency resolution of the operation is controlled by two important factors, 

the diffraction limit, and the maximum transverse momentum  𝑘𝑚𝑎𝑥. First, the diffraction 

limit is governed by the periodicity of the metasurface. To have the single solution after 

the operation, the periodicity is required to support only the lowest diffraction channel 

satisfying the relation |𝑘⃗ 𝑚+𝑛≥1| > |𝑘⃗ 0| under the 𝑘𝑚𝑎𝑥 of our interest, where m and n are 
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the orders of diffraction. In this study, we are utilizing the triangular lattice, therefore, the 

diffraction orders are defined by two reciprocal lattice vectors, 𝑏⃗ 1 = −
2𝜋

𝑎
(
1

√3
𝑥̂ + 𝑦̂) and 

𝑏⃗ 2 = −
2𝜋

𝑎
(
1

√3
𝑥̂ − 𝑦̂).  

 

Fig. S3b shows the normalized transverse propagation vector, 𝑘𝑚+𝑛=1
𝑛𝑜𝑙 = |𝑘𝑚+𝑛=1| 𝑘0⁄ , 

for the mode 𝑚 + 𝑛 =1, and describes the relationship between the diffraction limit and 

the maximum incident angle of the operation 𝜃𝑚𝑎𝑥. The white dashed circle in the figure 

is the diffraction limit 𝜃𝑑𝑖𝑓𝑓, which supports a single diffraction channel in all transverse 

direction. For the incident angle smaller than 𝜃𝑑𝑖𝑓𝑓 ,  𝑘𝑚+𝑛=1  exceeds 𝑘0  and only the 

single mode 𝑘𝑚+𝑛=0  exists, while the incident angle larger than 𝜃𝑑𝑖𝑓𝑓  supports 

propagating 𝑘𝑚+𝑛=1  under 𝑘0 . Therefore, the computational metasurface operating 2D  

domain has to be designed optimally within the diffraction limit 𝜃𝑑𝑖𝑓𝑓, always satisfying 

|𝑘⃗ 𝑚+𝑛=1| > |𝑘⃗ 0| in all azimuthal angle of incidence. 

 

The spatial frequency resolution, which is directly related to the optical resolution, is 

determined by 𝑘𝑚𝑎𝑥 as described in the main text and quantized as a numerical aperture 

NA. The relation between NA and the maximum propagation momentum 𝑘𝑚𝑎𝑥 is defined 

as NA = 𝑘𝑚𝑎𝑥/𝑘0 = sin 𝜃𝑚𝑎𝑥 , which in turn, 𝜃𝑚𝑎𝑥  determines the sharpness of the 

calculation, essentially the pixel size of the output. Following the  discrete Fourier 

transform, the pixel size of the operation can be defined as 𝜋 𝑘𝑚𝑎𝑥⁄ . [4]  

 

 
 

Figure. S3. (a) Analog signal processing when the 2D optical input image impinges on the 

computational metasurface. (b) Relationship between the diffraction limit and the 

maximum angle of incidence in transverse momentum space. The color scale is truncated 

to a unitary to clearly show the diffraction limit. 
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3. 2D operation with different polarization bases. 

Next, we describe how we analytically calculate the linearly polarized 2D optical input 

with the metasurface, where the input image is composed of x- and y-polarizations. 

Assuming that the input signal is polarized to the x- and y-axes with different amplitude, 

the electric field can be represented as 𝐸𝑥
𝑖𝑛(𝑥, 𝑦) and 𝐸𝑦

𝑖𝑛(𝑥, 𝑦) as described in the main 

text. These field components become 𝐸̃𝑥
𝑖𝑛(𝑘𝑥, 𝑘𝑦) and 𝐸̃𝑦

𝑖𝑛(𝑘𝑥, 𝑘𝑦) after performing spatial 

Fourier transform, with the same amplitude in the space domain. For the transmission 

derived within the sp-polarization basis, we first decompose the field in transverse domain 

and convert them into xy-polarization basis following the description in Fig. S4a. Then, we 

can calculate the output signal in the spatial frequency domain with the transmission 

𝑇̿(𝑘𝑥, 𝑘𝑦) as below. 

(
𝐸̃𝑠
𝑜𝑢𝑡(𝑘𝑥, 𝑘𝑦)

𝐸̃𝑝
𝑜𝑢𝑡(𝑘𝑥, 𝑘𝑦)

) = (
𝑇̃𝑠𝑠(𝑘𝑥 , 𝑘𝑦) 𝑇̃𝑠𝑝(𝑘𝑥 , 𝑘𝑦)

𝑇̃𝑝𝑠(𝑘𝑥 , 𝑘𝑦) 𝑇̃𝑝𝑝(𝑘𝑥, 𝑘𝑦)
) (

sin𝜙 cos𝜙
−cos𝜙 sin𝜙

)
⏞          

𝑃𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟  𝑅̿

(
𝐸̃𝑥
𝑖𝑛(𝑘𝑥, 𝑘𝑦)

𝐸̃𝑦
𝑖𝑛(𝑘𝑥, 𝑘𝑦)

).   (S2)      

 

Here, we define the polarization converter matrix 𝑅̿ between xy- and sp-polarization bases. 

After deriving the output in the spatial frequency domain, we multiply the inverse matrix 

of the polarizations converter 𝑅̿−1 to the output to transform it back to xy-polarization basis 

as it is described in Fig. S4b. The final form of outputs can be derived by taking the inverse 

Fourier transform as 𝐸𝑥
𝑜𝑢𝑡(𝑥, 𝑦) and 𝐸𝑦

𝑜𝑢𝑡(𝑥, 𝑦) as displayed in the Eq.(1) in the main text. 

The squared value of this field amplitude is what we measure experimentally with a 

detector. 

 

Figure. S4. (a) Electric field decomposition and synthesis into sp-polarization basis from 

xy-polarization basis. (b) Electric field decomposition and synthesis into xy-polarization 

basis from sp-polarization basis. 
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For unpolarized light, we assume that the field constitutes of both x- and y-components 

with the same intensity and random phases. Then, the average intensity of detected light is 

found by adding the intensities of the two orthogonal polarization components. 

 

 

4. Transfer function design 

Here, we provide a practical analysis to engineer the nonlocality with the metasurface and 

explain how to design different spatial frequency resolutions or types of operation. In a 2D 

triangular lattice metasurface, the radius of embedded hole at a fixed periodicity controls 

the coefficient 𝑞 in Eq. (S1), which represents the contribution of the discrete system, and 

the thickness of the metasurface manages the contribution from the continuum background 

state within Fano resonance. 

 

 
Figure. S5. The transmission as the incident angle 𝜃  is changed when the azimuthal 

incident angle 𝜙  is fixed to 0 deg. (a) The Fano responses with the different radii of 

cylindrical holes for both s- and p-polarizations. The wavelength is normalized with the 

resonance wavelength at the normal incidence. (b) The transfer function of s- and p-

polarizations at a single wavelength. 

 

First, we provide the transmission of the 2nd-order differentiator in Fig. S5, with two 

different radii 𝑟 = 65nm and 𝑟 = 70nm. Here, the loss is not considered, and the other 

geometries are defined to be 𝑎 = 300nm and 𝑡 = 130nm. Fig. S5a shows the Fano response 

in the wavelength spectrum as the incident angle is changed. For two different geometries, 

the metasurface achieves the perfect transmission at 14 deg and 16 deg toward the s-

polarized input incidence, and at 28 deg  and 34 deg toward the p-polarized input incidence. 
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As a result, the metasurface supports different NAs for both s- and p-polarizations, as 

shown in Fig. S5b, at the resonance wavelength of normal incidence. By changing the 

radius of the unitcell component, which contributes to the leaky wave resonance, we show 

that the spatial frequency resolution of the metasurface can be engineered. 

 

Next, we address how to control the types of operation by managing the contributions from 

the continuum state. Here, the thickness of the metasurface is changed from 𝑡 =130nm to 

𝑡 =180nm with 𝑎  =  300nm and 𝑟 =70nm, and the 1D transmission amplitudes are 

provided in Fig. S6. The Fano response with 𝑡 = 180nm gives a different transmission 

curve spectrum compared to the one with 𝑡  =  130nm, offering a symmetric dip as a 

function of wavelength. Here, by increasing the thickness of the metasurface, the 

contribution of the continuum state is largely increased compared to the discrete state and 

gives the symmetric transmission profile. [1] 

 

As a result, tuning 𝑡 controls the types of mathematical operations, while maintaining the 

same spatial frequency resolution, as shown in Fig. S6b. In the figure, the transmission 

profile is narrowed in the transverse momentum space with the larger contribution from 

the continuum state, where the line shape of the transmission is suitable for the lowest 

differential operation. 

 
 Figure. S6. The transmission as the incident angle 𝜃  is changed when the azimuthal 

incident angle 𝜙 is fixed to 0 deg. (a) The Fano responses with the different thicknesses of 

the metasurfaces for both s- and p-polarizations. The wavelength is normalized with the 

resonance wavelength at the normal incidence. (b) The system response of s- and p-

polarizations at a single wavelength.  
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5. 2nd-order differential operation 

5.1. Ideal system response 

Fig. S7 shows the amplitude and phase of the ideal 2nd-order differentiator. Here the 

maximum angle of incidence is set to be 8 deg. Correspondingly, the transmission response 

of Fig. 1c in the main text for all angles and polarizations is shown in Fig. S8. 

 

 

Figure. S7. (a) The transmission amplitude of the ideal 2nd-order differentiation. (b) The 

phase of co-polarized input incidence is flat with −𝜋. 

 

 
 

Figure. S8. Transmission amplitude of co-polarized and cross-polarized light incidence. 
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5.2. Different NAs between s- and p-polarizations 

As we have mentioned in the main text, the metasurface can perform high-quality edge 

detection supported by an isotropic system response, even if it supports different NAs for 

two orthogonal polarizations. Here, we offer another design of the metasurface performing 

2nd-order differentiation, which supports different NAs for s- and p-polarizations: NA=  

sin 25° = 0.4226 for s-polarized input, and NA = sin 50° = 0.7660 for p-polarized input 

as shown in Fig. S9. The metasurface is designed with 𝑎 =360nm, 𝑟 =100nm, 𝑡 =125nm 

including material loss, and operates at 𝜆  =  643nm. The cross-polarized transmission 

amplitude is negligible as shown in the figure, and the phase is symmetric in transverse 

spatial domain supported by the structure symmetry. 

 

 
 

Figure S9. The transmission amplitude of co-polarized and cross-polarized light incidence. 

 

When the unpolarized 2D optical image is illuminated to the metasurface of NA = 0.4226, 

the efficiency of |𝑇𝑝𝑝| drops to 0.1 at the maximum transverse momentum. However, 

supported by the isotropic system response and the analysis in Fig. S4, the metasurface can 

highlight edges in all transverse directions, which in turn, supports high quality edge 

detections in all azimuthal angles of propagation. 

 

Fig. S10 shows the output images when the unpolarized input image in Fig. S10a is 

projected to the ideal system and to the metasurface under an NA = 0.4226. In the results, 

we can see that the output after the metasurface in Fig. S10c highlights the edges clearly in 

all transverse directions of propagations, analogous to the output after the ideal system in 

Fig. S10b. 
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Figure. S10. (a) The complex 2D input image. (b) The output after the ideal system with 

NA = 0.4662 when the unpolarized input image in (a) is illuminated. (c) The output after 

the metasurface with NA=0.4226 when the unpolarized input image in (a) is illuminated. 

 

6. 1st-order differential operation 

6.1. Ideal system response 

The ideal system response of the 1st-order differentiator is provided in Fig. S11. Here the 

amplitude is defined as sin 𝜃𝑖𝑛𝑐, and the phase jumps at normal incidence with 𝜋 for co-

polarized plane wave incidence. Here, the coefficient 𝐴1(𝜙) is applied to the ideal system 

response with 120 deg rotational symmetry, considering the system response of the 

metasurface in Fig. 3b.  

 

 
Figure. S11. The ideal system response of the 1st-order differential operation. (a) The 

transmission amplitudes for both co- and cross-polarizations. (b) The transmission phase 

of the co-polarized light incidence. 
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6.2. Engineering the odd phase response  

As explained in the main text, a 𝜋-phase jump in the odd order differentiator can be 

engineered by applying the substrate to the asymmetric lattice in Fig. 3a. Here, we elucidate 

how to engineer the phase jump with different thickness of the substrate in Fig. S12. In the 

figure, phase profiles near normal incidence are plotted when the thickness of the substrate 

is swept from 51nm to 55nm with 1nm step, where near 𝜋-phase jumps are observed for 

both s- and p-polarizations. For the different thicknesses, the resonance wavelengths are 

slowly shifting from 𝜆 = 628nm to 𝜆 = 629nm. 

 
Figure. S12. The phase profile near the normal incidence with the different thicknesses of 

the substrate. For both s- and p-polarizations, the metasurface achieves near π-phase jump 

at resonance wavelength. 

 

6.3. Entire transmission response in Figure 3b 

 

Figure. S13. The transmission amplitude of co-polarized and cross-polarized light 

incidence of the metasurface in Fig. 3b.  



12 

 

7. Comparison of 2D edge detection between 1st- and 2nd-order differential operation 

In the main text, we showed that the 1st-order differentiator offers a single spike per a single 

edge, while the 2nd-order differentiator gives double spikes per a single edge. The results 

were provided with 1D input signal of a single polarization. Therefore, here, we show that 

this property is also preserved in the case of 2D optical operation of all transverse spatial 

frequency domain, by comparing the outputs of Fig. 2 and Fig. 5 in the main text.  

 

First, we compare the outputs after the ideal system response in Fig. S14. Here, the output 

image is expanded to show the details of Fig. 2b and Fig. 5b with 1200 ≤  𝑥/𝜆 ≤

1680, 1080 ≤ 𝑦/𝜆 ≤ 1560. For the input image in Fig. S14a, the output after the 1st-order 

differentiator gives a single solid line following the object boundary. If we look at the 1D 

cross-cut at 𝑥/𝜆 = 1560 as in the bottom of Fig. S14a, we can see that the ideal 1st-order 

differentiator gives a single spike at the image edge as shown in the bottom of Fig. S14b.  

 

However, the 2D output image in Fig. S14c shows double solid lines following the object 

boundary as a result of the 2nd-order differentiation, where the cross-cut at 𝑥/𝜆 = 1560 

gives double spikes per edge as shown in the bottom figure. 

 

 
Figure. S14. The expanded 2D input and outputs after the ideal system response. The 

bottom 1D figure shows the 1D cross-cut intensity profile at 𝑥/𝜆 =  1560. (a) The 2D 

input image (upper). The 1D input intensity gives the rectangular-like input shape (bottom). 

(b) The 2D and 1D outputs after the ideal 1st-order differentiator. (c) The 2D and 1D outputs 

after the ideal 2nd-order differentiator. 

 



13 

 

Next, we compare the output after the metasurface in Fig. S15. In the results, we can see 

that the output after the 1st-order differentiator also gives a single solid line following the 

object boundary in Fig. S15b as the ideal differentiator. The noise around the edges is small, 

and is induced by the phase mismatch with the ideal system. The cross-cut at the same x 

coordinate proves that the metasurface gives a single spike per edge as shown in the bottom 

figure of Fig. S15b. The output after the 2nd-order differentiator is also shown in Fig. S15c, 

where the metasurface output has double spikes at a single slope change, as we can expect 

from the ideal system response.  

 

To conclude, the metasurface performing 1st-order differentiation appears to be more 

suitable for edge detection application in terms of precision and accuracy, offering single 

peak at the field intensity variation.  

 

 
Figure. S15. The expanded 2D input and outputs after the proposed metasurface. The 

bottom 1D figure shows the intensity profile at 𝑥/𝜆 =  1560. (a) The 2D input image. The 

1D input intensity gives the rectangular-like input shape. (b) The 2D and 1D outputs after 

the metasurface in Fig. 5d. (c) The 2D and 1D outputs after the metasurface in Fig. 2d. 

 

8. Passive integration 

The metasurface can perform an even-order passive integration by properly engineering 

the nonlocal response and the operation wavelength. By choosing the operating frequency, 

where the metasurface supports zero transmission at 𝜃𝑚𝑎𝑥, the metasurface can perform 

the opposite operation of an integral-like low pass filter. Here, the metasurface is optimized 

to 𝑎 = 300𝑛𝑚, 𝑟 = 70𝑛𝑚 and 𝑡 = 180𝑛𝑚, and the system response is provided in Fig. 

S16, where NA = sin 13°= 0.2250 for the s-polarized input incidence, and NA = sin 30°= 
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0.5000 for the p-polarized input incidence. The operation wavelength is 𝜆 = 640nm. The 

phase response in Fig. S16b shows transverse symmetry in all azimuthal angles of 

propagations supported by the lattice symmetry.  

 
Figure. S16. The metasurface system response of the passive integral operation (a) The 

transmission amplitudes for both co- and cross-polarizations. (b) The transmission phase 

of the co-polarized light incidence. 

 
Figure S17. (a) The expanded 2D input and output after the metasurface. (b) 1D cross-cut 

of 2D input (horizontal dashed line in the left panel of (a)) and of 2D output (horizontal 

dashed line in the right panel of (a)) after the metasurface system response in Fig. S16. (c) 

1D cross-cut of 2D input (vertical dashed line in the left panel of (a)) and 1D cross-cut of 

2D output (vertical dashed line in the right panel of (a)) after the metasurface system 

response in Fig. S16. 
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The 2D metasurface output is provided in Fig. S17 for the same input image in Fig. S14 

and S15, and line cross-cuts at 𝑦/𝜆 = 1440 and 𝑥/𝜆 = 1156 are provided in Fig. S17b 

and S17c. The results show that the sharp edges of the input image are smoothen after the 

metasurface, effectively filtering out the high frequency components. Here the output is 

calculated with NA = 0.2550. This type of metasurface can be utilized to support noise 

cancelling in optical image processing applications. 
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