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ABSTRACT:Planar electron-driven photon sources have been e-
recently proposed as miniaturized light sources, with prospects for
ultrafast conjugate electrgnoton microscopy and spectral

interferometry. Such sources usually follow the symmetry of the
electron-induced polarization: transition-radiation-based sources,
for example, only generate p-polarized light. Here we demonstrate

that the polarization, the bandwidth, and the directionality
photons can be tailored by utilizing photon-sieve-based strug
We design, fabricate, and characterize self-complementar& i
e
g

)
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+
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structures made of holes in an An and generate light vort
beams with speeid angular momentum orders. The incomin
electron interacting with the structure generates chiral surface
plasmon polaritons on the structured Au surface that scatter into e fBine outcoupled radiation interferes with transition
radiation creating TE- and TM-polarized Lagu@aass light beams with a chiral intensity distribution. The generated vortex light
and its unique spatiotemporal features can form the basis for the generation of structured-light electron-driven photon sources

KEYWORDS:Electron-driven photon source, chiral, angular momentum, cathodoluminescence angle-resolved mapping,
plasmon polaritons, chain plasmons
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INTRODUCTION electron-driven photon soa, based on a photon sieve

3 . .
Electron beams interacting with materials and nanostructur%téucwré' This structure is composed of an array of nanoholes

can cause electromagnetic radiation, with various mechanidhg9rporated into a thin golé, distributed in such a way to
involved. such as transition and diction radiatiof, manifest an adiabatic increase in the periodicity of the lattice;
Cherenkov radiatichand Bremsstrahlufi¢Electron-driven  hence, generating Gaussian-beam-like focused radiation upon
radiation has been mostly utilized as diagnostic schemesétgctron beam irradiation. Here, we demonstrate that a chiral
characterization techniques; namely, through detecting higrattern of nanoholes can be used to generate Laguerre
energy charged particles, as for Cherenkov radiatippjng Gaussian-like beams and that they can achieve vortex light
quasiparticle excitations such as plasmons and &aitdns, sources with precise control over the pattern of phase
elemental mapping of atomic structures by characteristic ¥ngularities and the orbital angular momentum of light. Light
rays. Additionally, in 1953, Smith and Purcell proposed theand matter waves with a twist have various applications in
interaction of electrons with optical gratings for the generatigfuantum optics, investigating the selection rules and coherent
of coherent light Wa\féﬁhe_ so-called SmitRurcell radiation  control** 2?Vortex light and vortex plasmons can be generated
occurs due to synchronicity between the traveling time Qfs 5 result of the interaction of emitters anckRaight with
electrons and photons anrygmde the grating axis enabled by fhg | patterns like Archimedes spiral paftéthsThus,
smaller phase velocity of higher-order optical Floquet modesrﬂ rging twisted light with electron-driven photon sources

theenegr;atlgr]?Herg]AEzigLC?AI Sf)afg;"’,‘fé%no'rsotgﬂustg'ﬁé’e:Sed to paves the way toward correlative electron-photon spectroscopy
9 : yith twisted light.

Recently, the demand for the generation of planar few-phot
coherent sources with tailored properties has raised interests
toward metamaterial-baSednd holographic free-electron- Received: May 7, 2020
driven photon sourc&sParticularly, it was shown that such Revised: July 8, 2020
sources have promising applications in correlated electrdriiblished: July 9, 2020
photon spectroscopy and ultrafast microscopy with electron
microscopes. Specically, for applications in ultrafast micros-
copy, we have recently designed and characterized a broadband
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Cathodoluminescence (CL) angle-resolved mapping is usadts as mirror for propagating surface plasmon polaritons (SPPs)
to characterize the electron-induced radiation from ouience enhancing the @ency of light generation from the
structures. We show that the generated vortex light igsanoholes. Scanning electron microscopy (SEM) images of the
broadband, covering the entire visible-to-near-infrared spectfgtee spiral geometries are showviigore a.
range. Our CL experimental results show good agreement with

nite-di erence time-domain (FDTD) simulations. Indeed 5 b
creating vortex light using Archimedes spiral patterns interacting T
with electrons has been already progGsteie, unraveling the
dynamics of the interaction using our FDTD simulations, we
highlight the screwing principle of the generated vortex light, the
morphology of the phase singularity regions, as well as the
emergence of both TE- and TM-polarized Lagu@agssian
vortex beams. Moreover, we observe ultrabroadband vortex light
covering the wavelengths of 380 to 900 nm. Particularly, the
latter are formed due to the self-complementary nature of our
structural design in such a way that both surface and void
plasmons propagate along and in between the chiral arms,
respectively. We thus achieve a design principle for structured-
light generation, and in particular, generation of vortex light with
broadband and hybrid nature suitable for coherent control of
nanophotonic systems in an electron microscope.

RESULTS AND DISCUSSION

Design Principle.Planar chiral arms composed of holes in a
metal Im are generated using a generic mathematical
description given by

|H|(arb.unit)

Figure 1.(a) SEM images of fabricated counterclockwise spiral

(%, Y) = 2x 1(§6t(cos(2n # ), sin@ t ) structures with 2, 3, and 4 arms composed of chains of holes in a gold
! ! Im.l indicates the total topological charge we expect to observe in the
(1) far eld. (b) Schematic of interaction of the p-polarized evanetdent
wheret is a control parameter ded on the interval [0, 1]. of a swift electron with a counterclockwise spiral structure. The electron

Here, &, y) de ne the coordinates of the holes with respect tosimultaneously generates transition radiation and SPPs that partly
y QN i

B . N . scatter into magnetic localized surface plasmons of the holes
the origin. More specally, the parametas discretized §s= propagating along the spiral chains. The outscattered light is composed

(n) withnbeing aninteger=0, 1, ..Nand <land <1 of broadband right-handedlds with orbital angular momentum

are parameters used to enable inhomogeneous discretizati@itex light) in both the near- and the feld zones. The bottom
controlling the distance between nanoholes in the arms. Also thege shows the magnitude of the z-component of the maghatic
radius of each hole is givepy (R + 1,2 x R), whereR = 50 5 nm above the surface. The center image shows the amplitude of the
nm andR, = 150 nm. The radii of the holes are thereforemagneticeld componentat 500 nm above the structure. The parabolic
adiabatically increased from 50 nm at the origin to 200 nm at ti@irror that collects the CL is also indicated.

outer rims along the spiral to achieve broadband emission and

the center-to-center distance between the adjacent holesNanoholes in a noble metkth can host resonant plasmonic
changes from 150 to 450 nm. Since the size of the holesagnetic dipole moments, according to Babipenciple,
species the resonant frequency of induced magnetic dipolanalogous to the excitation of electric dipoles in a metal
moments, the smooth change of the hole size helps to realizeamoparticlé® *° Radially propagating SPPs excited on the
broadband spectrum for the vortex lighis the winding  surfaces of the goltin interact with the holes and cause the
parameter and dees the interarm distance impacting the excitation of the magnetic dipole inside the nanoholes. For the
compactness of our structures. Its value @&edt structuresis  thin gold Im used here, both the quasi-symmetric and quasi-
denoted later. The subscript ects the arm number, and the antisymmetric SPP charge distributions are excited with the
initial direction of each chiral arm at the origin is giventiye guasi-symmetric SPP distribution decaying more slowly (see
vortex number of the generated light in the &4d is supplementary Figure) SBhe symmetry is determined by the
determined by the number of arms. Both clockmiseQ) induced charge densities at the upper and lower surfaces. The
and anticlockwisen(> 0) spirals were made, which generateinduced magnetic dipole in each hole couples to the magnetic
clockwise and anticlockwise vortex beams propagating upwaligoles in adjacent holes, resulting in the propagation of energy
Light with inverse winding number propagates downward frokna radiative energy exchange, akin to the dipolar interactions

the structure. along a chain of nanopatrticles, which are not positioned in the
We investigate three structures composed of two, three, anelar-eld regions of each otiér:? Indeed, for most of the
four chiral arms, attained by introdunirg+2 and ; (0, ), nanoholes, the distance between the adjacent holes is above 100

m=+1.5and; (0, 2/3, 4 /3),andm=+1and; (0, / nm; therefore, neaeld interaction is negligible. Propagating

2, , 3/2) into eq 1 Themvalues are controlled to maintain chain plasmons along chiral arms, in contrast to SPPs, can
the same interarm distance. These structures were fabricate@ sctively couple to the fald creating the vortex lighigure

drilling nanoholes into a 40 nm thick evaporatedigofh top 1b).

of a 20 nm thin §l, membrane using focused-ion-beam Angle-Resolved Cathodoluminescence Distributions.
milling. A void ring was fabricated around each structure, whiglo determine the characteristics of the generated vortex light,
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we use angle-resolved cathodoluminescence spectroscopy awtdraged intensity distribution in space. In this geometry, we
30 keV electrons. The angle-resolved CL distributions agenerate both transition radiation originating from an electron
shown irFigure Zor the three spiral structures, both at a singlebeam traversing a multilayer system and veltisxgenerated
by scattering from nanoholes. Because their wavefronts have
di erent radii of curvature (smaller for TR), it can be shown
fromeq 2that this leads to ective inertia around the optical
axis. This implies that at each instance in time, this results in
curved arms with a handednespacéhat is opposite to the
temporal rotation direction (segjure b andsupplementary
movig.

Optical waves with orbital angular momentum are generally
represented by an expansion in the Lagugsressian (LG)
orthonormal basis in cylindrical coordinates (), as

_ Apl 2 {l il 2 2 2
WD wa Ma w0 1“% w?<zl
G2

k Lo
x expgoz+ ;F\?(Z) +il S G(Z)i

Figure 2.Angle-resolved CL distributions (30 keV) for counter- 2
clockwise spiral structures that generate Iighl=y\2ﬂ13, and 4 phase @
cycles, at 650 nm and over a 38D nm bandwidth. where and are the radius and azimuthal angle respedctively,

is the axis of propagatioh, is a normalization constant,

wavelength of 650 nm (bandwidth 40 nm) and over the fulV(2 = Wy1+ (2 2 ? 25 = %koWJZ is the Rayleigh range,
bandwidth of the detector (38800 nm). In all cases, the kyis the free-space wavenuni®ie),= z(1 + (zz% 7%), and ¢
location of electron impact was chosen to be almost at the cente2p + |I| + 1) tan Y(z/ z) is the Gouy phasld',' is the Laguerre

of the structure. The angle-resolved maps show clear charagbetynomial, withbeing the angular momentum ordenzthd

istic spiral features that are beamed upward from the sampieder of radial variations. The time-averaged angular momen-
This contrasts with the common case of an electron beatam density of the LG waves alongthgis is given iy = (I/
exciting a planar metén, for which transition radiation (TR) )|Up||2.20 LG waves are solutions to the paraxial wave equation.
is observed with distinct high-angle lobes and little upwaidterestingly, our electron-driven photon sources demonstrate
emission. The number of the winding arms matches with that sfich beaming characteristics as web\iseéementary Figure

the fabricated structure, highlighting the relation between tt&], for 3D eld distribution}® Here, we demonstrate a
number of the arms and the orbital angular momentum of thgualitative comparison between the generated optical waves
light. However, we observe that the handedness of the obserfredn our source and LG waves. The scalar wave function
winding arms is opposite to the orientation of the arms of thg,( , ,2) in eq 2is related to either trecomponent of the
fabricated structure. This can be explained as follows. As angalactric eld, or to thez-component of the magnetield,
momentum results from the dynamicelufs that are evolving depending whether TM or TE polarizations are considered,
in time, its handedness is imprinted inghmgoravolution of respectively. An electron beam traversing a thin métallic

the electromagnetields. However, we measure the time-generates TR with a nonzermomponent of the electrield,

Figure 3Simulated angle-resolved CL distributions in theldidfor counterclockwise spiral structures that generate ligh@yitt3, and =4, at
depicted wavelengths for a 30 keV electron incident at the center of the spiral.
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Figure 4Snapshots of the spatial distribution of time-depenciemiponent of the magnetic (a) and electricdlas at depicted times, in the near

eld zone = 10 nm above the surface (top row) and in theefdizone =1 m above the surface (bottom row), for the counterclockwise spiral
structure with 4 chiral arms. The electron reaches the upper surface ofthatysl@ fs. Radially propagating electron-induced excitation leads to
SPPs scattering the holes and propagating at the areas between the chains, generating magnetic chain plasmons along each spiral. The cohel
superposition of all scattered waves leads to right-handed L&gwssian TMand TE-polarized optical waves in the &d. Dashed circular
arrows demonstrate the twisting direction of the generated vortex beams.

but the z-component of the magnetield remains zero. complex angular distributions of the &ud-light, which we
However, due to the excitation of magnetic dipole moments attribute to the excitation of higher-order modes.

the nanopinholes in our structured thims, &-component for Field Dynamics. To gain a better understanding of the
the magneticeld will be generated as well. Thus, our structurebehavior of our structures upon electron impact and the
lead to the generation of hybrid waves, which, focatam, mechanisms behind the generation of optical vortices, the
we describe as a superposition of TE and TM waves. dynamics of the electromagnetatds in both time and

In LG beams the parametén eq 2re ects the azimuthal frequency domains are closely expléigdre 4shows the
phase variation of theld, and its value corresponds to the spatial distribution of the induced time-deperigleandH,
order of the phase singularity at the center of the bearel@he  elds at selected times after the electron excitation and at two
intensity sustains a typical donut-like shape farwhereasits ~ di erent heights, namely, 10 nm andnlabove the surface.
radius depends on the valulg(séesupplementary Figure)S2 ~ Several generation, propagation, scattering, and radeation e
Therefore, given the fact that our CL apparatus detects the tintgen lead to vortex light emission.
averaged intensity of thedd, we would expect to observe such Radial SPP Generatiddpon the electron impact, a radially
donut-like intensities, contrary to the observed winding arms. piopagating SPP wavepacket is excited. By comparing time
more detail, our angle-resolved CL maps are theoreticaipapshots (data not shown), we that SPPs propagate at a
describedas®( , ; )=/ )S( , ; ), where isthe phase velocity close to the speed of light in vacuum, in
photon angular requency, andS,( , ; ) = agreement with the dispersion of the symmetric SPP mode (see
iRe{E( . ) x H*( v 1) ris the time- supplementary Figure) SBhe launched SPPs scattettte
2 v _ T holes in the chiral arms generating in-plane magnetic dipole
averaged Poynting vector in the &ld; E andH are the  moments in the holes. This is clearly seen in the magnetic near-
scattered electric and magnetids. Note that we use spherical eld plots ofFigure 4 (z = 10 nm), which shows intense
coordinates here, to be consistent with the observed angiagnetic eld hot spots in the holes at all simulated times. At
resolved maps. 6.72fs (top left panelifigure 4) the SPPs (propagating at 300

The reason behind observing the winding arms, instead of the/fs) have just reached the outer holes. At 11.34 and 14.81 fs
donut-like intensities, is quantitatively explained as thge spiral still lights up brightly due to plasmon propagation
interference between the generated LG waves and TR thakigng the hole spirals as well asation of SPPs from the outer
generated by the electron on impact{spplementary Figure ring. Note that larger holes at the end of the spiral show larger
S3, similar to what was observed for interference between singhggnetic eld intensities, which is due to the larger SPP
plasmonic holes and TRThe TR sustains a rathett spectral  scattering cross section and larger dipole moment. This wide
feature so that this interference phenomenon, similar to thele size distribution results in broadband coupling of SPPs
interference of LG waves with a reference Gaussiaft beanfeading to the broadband emission of the vortex light seen in
happens over a broad spectral range, as obséfigeddr? Figure A. The electriceld proles inFigure # re ect the

Figure 3shows numerically simulated angle-resolved Chpropagation of SPPs between the spinatglemental movie
distributions of the Poynting vectora#95, 540, and 651 nm. SJ).
The winding arms are clearly resolved and cover a broad spectréflagnetic Chain PlasmonsStrong far-eld coupling
range in agreement with the broadband datdgime 2 between the excited hole plasmons leads to the formation of
Comparing the calculated and measured CL distributions at chain polaritons in which magnetic plasmons propagate along
650 nm, wend good agreement between the number of spirahe hole array. Time movies of tekl patternsfupplemental
arms and their handedness. At650 nm the calculated CL movie Spclearly show the outward propagation of magnetic
distributions closely follow the symmetry of the structure,eld components along the chain as time progresses. In contrast
whereas at shorter wavelengths, the results indicate mavith planar SPPs, chain plasmons can show strong radiation loss
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Figure 5Fourier-transformeeld components associated withaFie TM, vortex lightz-components of (a) magnetatd ( = 652 nm) and (b)

electric eld ( =826 nm), at distances in the range QW78 m from the structure, demonstrating the twisting behavior of @htisalith orbital

angular momentum ordef ef4. (c) Phase prées of optical modes sustained by the structure showing singularities akin to twisting vortices at the
plane 1 m above the structure. At 1377 nm, only two phase singularity points are formed, and,anbd€E with= +2 are excited, whereas at

higher photon energies, more phase singular regions lelading for both TEand TV, elds are observed.

at wavevectors within the light corié>®thus contributingto  directly matches the simulation and is the opposite of the spiral

the chiral radiation pattern. As the chain plasmon polaritorientation on the sample.

originate from magnetic dipole moments in nanoholes, theySo far, we have described the time-dependsdt

create TE-polarized LG wavepackets. components obtained using FDTD calculations. To obtain
SPP Scattering and Propagatiddpon scattering othe insight into the spectral features and the phase singularities of

holes, SPP will propagate along the chiral ribbons between the vortex beam, we study the frequency components of the

holes. These chirally scattered and propagating SPPs are Tliated eld. We therefore calculate the Fourier-transformed

polarized, and all theld components can be calculated from €ld components to obtain both the magnitude and phase of the

the E, component. The chiral SPRsv pattern is the result of ~ €ld components at several wavelengths of a right-handed spiral

multiple scattering events fromedént holes, each generating With four arms at derent heights{igure &). The spirals retain

magnetic hole plasmons that radiate to thelthas described ~ their azimuthal orientation, in agreement with the time
above and generate TE-polarized waves. shapshots iRigure 4and with what is observed experimentally.

Transition RadiationSimultaneously to the initial gener- W& nd that TE polarization dominates the LG waves at

ation of SPPs, TR is generated, as a result of the time-vary ve!engthfg 700 nm, Wherdeas at Ié)tnger ngt;elen_lgrt]hs, ™
dipole associated with the moving electron and its image chaf§8ar'2€ waves are dominaftg(re 8,b). This

in the metal. This causes an ultrashort pulse of electromagn ticularly |nd|c.ates. that the coupllng str_ength between
radiation covering a broad spectral range and angul Jacent magnetic dipole moments excited inside nanoholes

distribution, as discussed above. The wavefront of TR is n ?crease;]s whetn mc;r?]asmg thebwavelfﬁlggﬁ‘m B demon—. ha
changed by the presence of nanostructured holes. TRsratesp ase pies of the vortex beams for the structure wit

IS _
characterized by the donut-shaped azimuthal distribution chiral arms at= 652, 826, and 1377 nm. As the centers of the

the electric fareld pattern shortly after electron impact (10.05;1ﬂ ngr?ear;Qg;%igggﬂyé?ﬁt:dpztr;hrﬁg-;?IQCEW]T |ci2;16agdb§]{ elated
fs). _It expands further for later times (14.64 and 18.10 fs pan Bserving a single phase-singularity in the céntb::wmas
in Figure B). » _ expected from a perfect LG mode in free space), four
The coherent superpositiai all scattering processes igiinguisheti= 1 points are observed. For the same reason,
described above leads to the vortex pattern observed in the {gfonger wavelengthsx 1200 nm) we observe the excitation
eld. Both the magnetic and electricéiapatternsA=1 m) of anl = 2 mode as seen in the magnesid. Therefore,
in Figure 4,b Clearly rect the vortex nature of the emitted depending on the path taken a|ong a Se]gcge;ﬂane, we
radiation. After 10.07 fs, strong upward beaming of light appedifght observe=0,2 ,and 4,at =1377nm,and =0, 2,
in the far-eld distributions, recting the time delay associated 4 | 6 , and 8, at longer wavelengthBiqure §). Our
with the fact that plasmonst propagate in the plane and then opservations thus hint at the possibility of expanding the
scatter out. The spiral structure is now clearly imprinted on thfenerated waves as a superposition of LG wayes yitind
scatteredeld. For the longer time delays [right-hand panels ir= 1, where each beam is laterally displaced from the origin. Due
Figure &,b] the far-eld patterns strongly evolve further due toto these variations, the generated vortex light does not have a
the interference between TR and scattered SPPs. Indeed, pleefect correspondence with a single LG Gaussian beam of a
angular orientation of the experimental angle-resolved CL dartainl-order, but only a similar distribution in the phase
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