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S1. Comparison of analytical model to Monte Carlo simulations 
Previous 𝑔𝑔(2)(𝜏𝜏) measurements in cathodoluminescence (CL) have been modelled using Monte Carlo (MC) 
simulations. Here we demonstrate the accuracy of our analytical model by comparing 𝑔𝑔(2)(0) results obtained 
with our analytical model to those produced by MC simulations. The comparison is performed for the three 
different electron beam configurations (continuous, pulsed with beam blanker and pulsed through 
photoemission). In all cases, the following steps were considered after the arrival of an electron to the sample: 

1. Creation of 𝑏𝑏𝑖𝑖 bulk plasmons, according to a Poisson distribution with expectation value 𝑏𝑏. 
2. Decay of each plasmon into 𝑚𝑚𝑖𝑖 electron-hole pairs, described with a Poisson distribution with 

expectation value 𝑚𝑚. 
3. Excitation of a quantum well by an electron-hole pair with probability 𝜂𝜂. 
4. Emission of a photon, following a given decay mechanism. 

The MC simulations with a continuous electron beam have been performed using the same code as in refs. 1–3. 
The code was adapted to represent the blanker experiment, in which only part of the initial continuous beam 
reaches the sample, thus generating (relatively long) electron pulses. In the MC simulations for the blanker case 
the current in continuous mode and the repetition rate were set to  20 pA and 1 MHz, respectively, and the pulse 
width was varied from 8 up to 500 ns, similar to the experiments. We also adapted the initial MC code to 
simulate electron pulses generated by photoemission. In this case, no continuous electron beam is initially 
generated, but instead we directly create pulses containing a certain number of electrons per pulse, given by a 
Poisson distribution with expectation value 𝑛𝑛𝑒𝑒. The pulse width is assumed to be Gaussian, with 𝜎𝜎 = 1 ps. The 
exact value of the pulse width is not critical, given that it is much shorter than the emitter lifetime 𝜏𝜏emitter. The 
MC simulations with photoemission were performed assuming a repetition rate of 𝐹𝐹 = 5.04 MHz. In all cases, 
the results from the simulations have been analyzed using the same procedure as for the experimental data. 

Figure S1 shows the values of 𝑔𝑔(2)(0) − 1 obtained from the MC simulations using a continuous electron beam 
(a), and a pulsed electron beam generated by beam blanking (b) and photoemission (c). In the three cases we 
show 𝑔𝑔(2)(0) − 1 as a function of electron beam current (a) and number of electrons per pulse (b, c). In all 
cases we consider an exponential decay for the emitter, with lifetime 𝜏𝜏emitter = 12 ns and an average number 
of 𝑏𝑏 = 0.2 bulk plasmons per electron that interact with the quantum wells, corresponding to an excitation 
efficiency of 𝛾𝛾 = 0.18. We also assume 𝑚𝑚 = 1 and 𝜂𝜂 = 1, even though it has already been shown that these 
parameters do not play a role in the final result of the MC simulation2. In this work we explain this fact by 
showing that 𝑚𝑚 and 𝜂𝜂 cancel out in the development of the analytical model. The time step in the simulations 
was set to 512 ps, the same as in our experiments. 
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Figure S1 also shows the results of our analytical model, in which we used the same parameters as in the MC 
simulations. We should note that here no fitting is needed, given that we just fix all the parameters (including 
𝑏𝑏). The results show a very good agreement between the MC simulations and the analytical model. 

 

S2. Analytical model – Continuous electron beam 
A 𝑔𝑔(2)(𝜏𝜏) experiment measures the photon statistics of a given emitter or source, and it is therefore  based on 
random processes: the emission of a photon is stochastic, following a certain probability distribution (for 
example, an exponential decay). Moreover, in typical experimental setups (such as the HBT experiment), the 
emitted photons are split randomly towards the two detectors, with a 50% probability of being detected by each 
detector4. The measurement is based on collecting enough statistics such that it can accurately represent the 
chances of having a correlation at a given delay compared to any other. It is therefore not possible to predict 
exactly how many photons will correlate with photons from the same electron (thus leading to bunching), and 
how many with photons from other electrons (uncorrelated events). Instead, we can calculate how likely it is 
that one scenario happens with respect to the other one. Hence, our analytical model is based on calculating the 
average number of combinations of correlations that lead to bunching (𝐴𝐴b) compared to the average number of 
combinations that lead to uncorrelated events (photons coming from different electrons, or pulses, in the pulsed 
case, 𝐴𝐴uncorr). 

We start from Eq. (2) of the main text, in which: 

𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(2) (0) = 1 +

𝐴𝐴b𝑐𝑐

𝐴𝐴uncorr𝑐𝑐

(2𝐵𝐵 + 1)𝑡𝑡𝐵𝐵
2𝛼𝛼b

, 

where 𝐴𝐴𝑏𝑏𝑐𝑐  contains the mean number of combinations of correlations between photons from the same electron 
(i.e., giving bunching), 𝐴𝐴uncorr𝑐𝑐  is the mean number of combinations of correlations between photons from 
different electrons (uncorrelated), 𝐵𝐵 is the total number of bins during the acquisition time 𝑇𝑇, 𝑡𝑡𝐵𝐵 is the bin size 
and 𝛼𝛼𝑏𝑏 is the shape factor of the bunching peak, defined as the ratio between the area and height of the peak. 
Hence, we now need to calculate 𝐴𝐴b𝑐𝑐  and 𝐴𝐴uncorr𝑐𝑐 . 

S2a. Correlations between photons from the same electron (𝑨𝑨𝐛𝐛𝒄𝒄 , bunching peak) 

We consider that when one electron interacts with an emitter (semiconductor, quantum wells, atomic defect, 
etc), a certain number of photons 𝑘𝑘 will be emitted, each of them with a certain arrival time 𝑡𝑡𝑘𝑘. We should note 

Figure S1: Monte Carlo simulations of g(2)(0) amplitude vs. electron beam current or number of electrons per pulse, 
together with the results from the analytical model. (a) Continuous electron beam, (b) electron beam pulsed using the 
blanking technique and (c) pulsed electron beam generated by photoemission. 

(S1) 
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that this value 𝑘𝑘 is not fixed, but will be different for each electron, given the stochastic nature of all the 
processes (creation of bulk plasmon, decay into electron-hole pairs, radiative decay of emitter). We want to 
count the number of combinations of pair-correlation events between photons from the same electron. We 
define one correlation as the detection of a pair of photons, thus we need to take subsets of 2 from 𝑘𝑘 photons, 
each photon with a fixed arrival time. Moreover, the order matters, given that this will determine whether the 
measured delay between photons is positive or negative, and there are no repetitions, i.e., a photon cannot 
correlate with itself. This is a common problem in combinatorics5, sometimes referred to as variation without 
repetition, from which we extract that the number of possible combinations is 

𝐴𝐴𝑘𝑘 = �
𝑘𝑘
2
� = 𝑘𝑘(𝑘𝑘 − 1). 

Next, we want to relate 𝐴𝐴𝑘𝑘 to physical variables, i.e., expected value of number of bulk plasmons per electron 
(𝑏𝑏), expected value of number electron-hole pairs created per plasmon (𝑚𝑚) and radiative decay efficiency (𝜂𝜂). 
We will follow steps 1-3 described in the main text, starting from step 3 and building up. 

3.  Given 𝑚𝑚𝑖𝑖 electron-hole pairs, each of them with a probability 𝜂𝜂 of exciting a QW that emits a 
photon, the expected value of the number of possible combinations of correlations of photons 
becomes 

𝐴𝐴3 = �𝐴𝐴𝑘𝑘Bin(𝑘𝑘;𝑚𝑚𝑖𝑖, 𝜂𝜂) = �𝑘𝑘(𝑘𝑘 − 1)
𝑚𝑚𝑖𝑖!

𝑘𝑘! (𝑚𝑚𝑖𝑖 − 𝑘𝑘)!
𝜂𝜂𝑘𝑘(1 − 𝜂𝜂)𝑚𝑚𝑖𝑖−𝑘𝑘

𝑚𝑚𝑖𝑖

𝑘𝑘=0

= 𝜂𝜂2𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖 − 1).
𝑚𝑚𝑖𝑖

𝑘𝑘=0

 

2.  Each bulk plasmon will create 𝑚𝑚𝑖𝑖 electron-hole pairs, described with a Poisson distribution with 
expected value 𝑚𝑚 �Poiss(𝑚𝑚𝑖𝑖;𝑚𝑚) = 𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖!
�. Hence, we need to account for all the possible values 

of 𝑚𝑚𝑖𝑖, weighted by their probability. The expected value of the number of possible combinations 
correlations of photons produced by 𝑚𝑚𝑖𝑖 electron-hole pairs is then 

𝐴𝐴2,𝑏𝑏𝑖𝑖=1 = � 𝐴𝐴3Poiss(𝑚𝑚𝑖𝑖;𝑚𝑚) =
∞

𝑚𝑚𝑖𝑖=0

� 𝜂𝜂2𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖 − 1) 
𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖

𝑚𝑚𝑖𝑖!

∞

𝑚𝑚𝑖𝑖=0

= 𝑚𝑚2𝜂𝜂2. 

 If an electron creates more than one bulk plasmon, each of these plasmons will decay into a certain 
amount of electron-hole pairs, with likelihood given by a Poisson distribution with expectation 
value 𝑚𝑚, as already described. Thus, we need to account for all the possible combinations of 
correlations of photons produced by an arbitrary number 𝑏𝑏𝑖𝑖 of bulk plasmons. We start with the 
case of two bulk plasmons, in which the expected value of the number of possible combinations of 
correlations of photons (the correlations can be from photons from the same or different plasmon) 
becomes 

𝐴𝐴2,𝑏𝑏𝑖𝑖=2 = � � 𝜂𝜂2(𝑚𝑚1 + 𝑚𝑚2)(𝑚𝑚1 + 𝑚𝑚2 − 1)
∞

𝑚𝑚2=0

 Poiss(𝑚𝑚1;𝑚𝑚)Poiss(𝑚𝑚2;𝑚𝑚)
∞

𝑚𝑚1=0

= 4𝑚𝑚2𝜂𝜂2. 

 It can be shown by induction (see S2d) that in the general case of 𝑏𝑏𝑖𝑖 bulk plasmons, which produce 
photons that can correlate with other photons from the same plasmon or a different plasmon, the 
expectation value of the number of possible combinations of correlations is 

𝐴𝐴2,𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑖𝑖2𝑚𝑚2𝜂𝜂2. 

1. Finally, the number of bulk plasmons produced by a single electron also follows a Poisson 
distribution with expected value 𝑏𝑏 (Poiss(𝑏𝑏𝑖𝑖; 𝑏𝑏)). Therefore, averaging again over all possible 
values of 𝑏𝑏𝑖𝑖, we obtain that the average number of possible combinations of correlations produced 
by one electron is 

(S2) 

(S3) 

(S4) 

(S5) 

(S6) 
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𝐴𝐴1 = � 𝑏𝑏𝑖𝑖2𝑚𝑚2𝜂𝜂2Poiss(𝑏𝑏𝑖𝑖; 𝑏𝑏) =  𝑏𝑏𝑚𝑚2𝜂𝜂2(𝑏𝑏 + 1)
∞

𝑏𝑏𝑖𝑖=0

. 

In the case of 𝑛𝑛 electrons, the mean number of possible combinations of correlations between photons from the 
same electron becomes: 

𝐴𝐴b𝑐𝑐 = 𝑛𝑛𝐴𝐴1 = 𝑛𝑛𝑛𝑛𝑚𝑚2𝜂𝜂2(𝑏𝑏 + 1). 

S2b. Correlations between photons from different electrons (𝑨𝑨𝟏𝟏𝒄𝒄 ) 

Next, we need to calculate the number of possible combinations of correlations between photons from different 
electrons. Taking into account the statistical distributions of each parameter involved in the emission of a photon 
(bulk plasmons, carriers, emission efficiency), the average number of photons emitted per electron is 

𝑁𝑁ph = � � �𝑘𝑘𝑘𝑘𝑖𝑖Poiss(𝑏𝑏𝑖𝑖 ;𝑏𝑏) Poiss(𝑚𝑚𝑖𝑖;𝑚𝑚) Bin(𝑘𝑘;𝑚𝑚𝑖𝑖 , 𝜂𝜂) 
mi

k=0

∞

𝑚𝑚𝑖𝑖=0

∞

𝑏𝑏𝑖𝑖=0

= 𝑏𝑏𝑏𝑏𝑏𝑏. 

We should note that the result is the same as if we would just consider the expected values 𝑏𝑏, 𝑚𝑚 and 𝜂𝜂 given 
that the number of photons scales linearly with these parameters. We now need to create pairs between two 
photons from different electrons. In this case the order is still important. We calculate the average number of 
combinations of correlations of photons coming from different electrons as 

𝐴𝐴uncorr𝑐𝑐 = [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛][(𝑛𝑛 − 1)𝑏𝑏𝑏𝑏𝑏𝑏] = 𝑛𝑛(𝑛𝑛 − 1)𝑏𝑏2𝑚𝑚2𝜂𝜂2. 
 

S2c. 𝒈𝒈(𝟐𝟐)(𝟎𝟎) for a continuous beam 

Finally, we can insert Eqs. (S8) and (S10) into Eq. (S1), rewrite 𝑛𝑛 as a function of the electron current, 𝐼𝐼 =
𝑛𝑛𝑛𝑛 (𝐵𝐵𝑡𝑡𝑏𝑏)⁄ . Given a typical acquisition time of a 𝑔𝑔(2)(𝜏𝜏) experiment of at least 1min, and bin size of 𝑡𝑡𝑏𝑏 =
0.512 ns, the total number of bins becomes 𝐵𝐵 ≈ 1011. It is therefore reasonable to take the limit 𝐵𝐵 → ∞ to 
obtain 

𝑔𝑔cont
(2) (0) = lim

𝐵𝐵→∞
�1 +

(2𝐵𝐵 + 1)𝑡𝑡𝑏𝑏
2𝛼𝛼b

𝑏𝑏 + 1
�𝐼𝐼 𝑞𝑞� 𝑡𝑡𝑏𝑏𝐵𝐵 − 1�𝑏𝑏

� = 1 +
𝑞𝑞
𝐼𝐼𝛼𝛼b

𝑏𝑏 + 1
𝑏𝑏

. 

The last expression can also be expressed in terms of the excitation efficiency γ (Eq. (6) in the main text, further 
explained in section S2e) such that 

𝑔𝑔cont
(2) (0) = 1 +

𝑞𝑞
𝐼𝐼𝛼𝛼b

log(𝛾𝛾 − 1) − 1
log (𝛾𝛾 − 1)

. 

 

S2d. Bunching peak: mean number of possible combinations of photon correlations from 𝒃𝒃𝒊𝒊 bulk 
plasmons  

We want to find the expected value for number of combinations of correlations for an arbitrary number of 
bulk plasmons. Similar to Eq. (S5), in the case of 𝑗𝑗 + 1 bulk plasmons, we have 

𝐴𝐴2,𝑗𝑗+1 = 𝜂𝜂2 � … � � �𝑚𝑚� + 𝑚𝑚𝑗𝑗+1��𝑚𝑚� + 𝑚𝑚𝑗𝑗+1 − 1�
∞

𝑚𝑚𝑗𝑗+1=0

∞

𝑚𝑚𝑗𝑗=0

 P𝑚𝑚�P𝑗𝑗+1

∞

𝑚𝑚1=0

 

(S7) 

(S8) 

(S9) 

(S10) 

(S11) 

(S12) 

(S13) 
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= 𝜂𝜂2 � … � � (𝑚𝑚𝑗𝑗+1
2 + 𝑚𝑚𝑗𝑗+1(2𝑚𝑚� − 1) −𝑚𝑚� + 𝑚𝑚�2 )

∞

𝑚𝑚𝑗𝑗+1=0

∞

𝑚𝑚𝑏𝑏𝑗𝑗=0

 P𝑚𝑚�P𝑗𝑗+1

∞

𝑚𝑚1=0

, 

where we have defined 𝑚𝑚� = 𝑚𝑚1+. . +𝑚𝑚𝑗𝑗 and Pm�  is the product of Poisson distributions, i.e.,  Pm� =

Poiss(𝑚𝑚1;𝑚𝑚) … Poiss(𝑚𝑚𝑗𝑗;𝑚𝑚) = ∏ 𝑒𝑒−𝑚𝑚𝑚𝑚𝑖𝑖

𝑖𝑖!
𝑗𝑗
𝑖𝑖=1 . Eq. (S13) can be further developed into 

𝐴𝐴2,b=j+𝟏𝟏 = 𝜂𝜂2 �𝑚𝑚(𝑚𝑚 + 1) + 2𝑗𝑗𝑚𝑚2 − 𝑚𝑚 − 𝑗𝑗𝑗𝑗 + � … � 𝑚𝑚�2P𝑚𝑚�

∞

𝑚𝑚𝑗𝑗=0

∞

𝑚𝑚1=0

�. 

Therefore, we need to find an analytical expression for the last term in Eq. (S14). We assume that 

� … � 𝑚𝑚�2P𝑚𝑚�

∞

𝑚𝑚𝑗𝑗=0

∞

𝑚𝑚1=0

= 𝑗𝑗𝑗𝑗(𝑗𝑗𝑗𝑗 + 1), 

which we will prove by induction. In the case of 𝑗𝑗 = 1, 

� 𝑚𝑚1
2

∞

𝑚𝑚1=0

P(m1; m) = 𝑚𝑚(𝑚𝑚 + 1). 

Assuming that Eq. (S15) is true, we need to prove that in the case of 𝑗𝑗 + 1 bulk plasmons, it becomes 
(𝑗𝑗 + 1)𝑚𝑚[(𝑗𝑗 + 1)𝑚𝑚]. Hence 

� … � � �𝑚𝑚� + 𝑚𝑚𝑗𝑗+1�
2

∞

𝑚𝑚𝑗𝑗+1=0

𝑃𝑃𝑚𝑚�𝑃𝑃𝑗𝑗+1

∞

𝑚𝑚𝑗𝑗=0

∞

𝑚𝑚1=0

= � … � � (𝑚𝑚�2 + 2𝑚𝑚�𝑚𝑚𝑗𝑗+1 + 𝑚𝑚𝑗𝑗+1
2 )

∞

𝑚𝑚𝑗𝑗+1=0

𝑃𝑃𝑚𝑚�𝑃𝑃𝑗𝑗+1

∞

𝑚𝑚𝑗𝑗=0

∞

𝑚𝑚1=0

 

= 𝑗𝑗𝑗𝑗(𝑗𝑗𝑗𝑗 + 1) + 2𝑗𝑗𝑚𝑚2 + 𝑚𝑚(𝑚𝑚 + 1) = (𝑗𝑗 + 1)𝑚𝑚[(𝑗𝑗 + 1)𝑚𝑚]. 

Finally, inserting Eq. (S15) into Eq. (S14), we obtain 

𝐴𝐴2,b=j+1 = (𝑗𝑗 + 1)2𝑚𝑚2𝜂𝜂2. 

S2e. Obtaining the excitation efficiency (𝜸𝜸)  

For each electron, the probability of interacting, i.e., creating at least one plasmon that can excite the quantum 
wells, or any other emitter, is 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 1 − Poiss(0;𝑏𝑏) = 1 − e−𝑏𝑏 , 

where 𝑏𝑏 is the average number of bulk plasmons generated per electron (around the emitter). We define 𝛾𝛾 as 
the fraction of electrons that create at least one bulk plasmon near the emitter. Given a certain number of 
electrons 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, from which 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 interact with the emitter, 𝛾𝛾 becomes 

𝛾𝛾 =
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

=
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

= 1 − e−𝑏𝑏 . 

S2f. Number of correlations at long delays   

We consider that electrons interact with the sample during a certain (square) time window 𝑇𝑇 = 𝐵𝐵𝑡𝑡𝑏𝑏, where 𝐵𝐵 
is the total number of bins and 𝑡𝑡𝐵𝐵 is the bin size. The distribution of the electrons in time can be represented as 
a uniform random distribution. The number of possible correlations between photons coming from different 

(S14) 

(S15) 

(S16) 

(S17) 

(S18) 

(S19) 

(S20) 
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electrons as a function of delay 𝜏𝜏 exhibits a triangular shape, with base corresponding to 2𝑇𝑇. This shape results 
from the convolution of two squared signals with width 𝑇𝑇. Thus, in the model, the total number of correlations 
are spread within an area corresponding to a triangle, with base (2𝐵𝐵 + 1)𝑡𝑡𝑏𝑏 and height ℎ1. Figure S2 shows an 
example of this effect. In the experiments, the typical acquisition time (at least seconds) is much larger than the 
time window within which we acquire correlations (30 𝜇𝜇𝜇𝜇 in our case for 𝑡𝑡𝑏𝑏 = 0.512 ps), and thus this effect 
becomes negligible in the narrow time window in which we analyze the data, i.e., we only see the very top of 
the triangle. However, in the case of a pulsed electron beam, the time window corresponds to the pulse width 
Δ𝑝𝑝. The correlations between photons from the same or different pulses then exhibit a triangular shape, with 
base 2Δ𝑝𝑝, as a function of 𝜏𝜏. This is the shape that we observe in our 𝑔𝑔(2)(𝜏𝜏) measurements with the blanker 
(inset of Fig.  3, main text).  

 

 

S2g. Calculation 𝜶𝜶𝟎𝟎. Discussion discrete/continuous 

A key parameter in our analytical model is the relation between the height and the area of the bunching peak, 
𝛼𝛼b (shape factor). Given a known decay function of the bunching peak, the shape factor can typically be easily 
calculated. In the case of a simple exponential we obtain 𝛼𝛼b = 2𝜏𝜏b, while for stretched exponential the shape 
factor becomes 𝛼𝛼b = 2 𝜏𝜏

𝛽𝛽
Γ �1

𝛽𝛽
�. Nevertheless, 𝑔𝑔(2)(𝜏𝜏) measurements are discrete, and thus these expressions 

for 𝛼𝛼b are only valid if the bin size 𝑡𝑡bin is much smaller than the typical decay time, such that we can assume 
an almost continuous function. Otherwise, the discretized nature of the measurement should be taken into 
account. For example, the generalized expression for 𝛼𝛼bunching in the case of an exponential decay with arbitrary 
bin size is 𝛼𝛼b = 2𝑡𝑡𝑏𝑏

1−𝑒𝑒−𝑡𝑡𝑏𝑏/𝜏𝜏b
, which becomes 2𝜏𝜏b when 𝑡𝑡𝑏𝑏 ≪ 𝜏𝜏b. 

 

S3. Analytical model – Pulsed electron beam 

In the case of a pulsed electron beam we need to adapt the definition of 𝑔𝑔(2)(0) given in Eq. (1) of the main 
text. Here, we need to normalize the height at 𝜏𝜏 = 0, with respect to the height of any other peak, 𝐻𝐻𝑖𝑖 , which 
represents the uncorrelated events. Hence 

Figure S2: Theoretical shape of the number of possible correlations as a function of delay 𝜏𝜏 between photons emitted after 
the exposure of the sample to an electron beam during a time 𝑇𝑇. Here, 𝑇𝑇 = 10 𝜇𝜇𝜇𝜇. The observed triangular shape results 
from the convolution of two square pulses with base 𝑇𝑇. The inset shows the curve at small delay, in which the triangular 
background is not observed. 
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𝑔𝑔pulsed2 (0) =
𝐻𝐻(0)

𝐻𝐻𝑖𝑖(𝑖𝑖 ≠ 0)
. 

𝐻𝐻(0) is the height of the peak at 𝜏𝜏 = 0. This peak will contain two contributions: correlations between photons 
from the same electron (with mean number of possible combinations 𝐴𝐴b

𝑝𝑝) and between photons from different 
electron but same pulse (𝐴𝐴uncorr,0

𝑝𝑝 ). As discussed in main text, the first contribution will be distributed over a 
temporal shape (with height ℎb

𝑝𝑝 and area 𝐴𝐴b
𝑝𝑝) determined by the emitter decay, through Eq. (S36). Hence, the 

ratio between the area and the height is: ℎb
𝑝𝑝 = 𝛼𝛼b𝐴𝐴b

𝑝𝑝, similar to the bunching contribution in the continuous case. 
In contrast, the temporal distribution of the correlations between photons from different electrons but same 
pulse (second contribution of 𝜏𝜏 = 0 peak) depends not only on the emitter decay but also the shape of the 
electron pulse. Hence, the shape of this contribution is given by the convolution of two electron pulses, 
convoluted also with the emitter decay (see S4b). We define the ratio between the area (𝐴𝐴uncorr,0

𝑝𝑝 ) and the height 
(ℎuncorr,0

𝑝𝑝 ) of this part as: 𝐴𝐴uncorr,0
𝑝𝑝 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎuncorr,0

𝑝𝑝 . 

ℎuncorr,𝑖𝑖(𝑖𝑖 ≠ 0) is the height of any peak at 𝜏𝜏 ≠ 0, i.e., containing correlations between photons from 
consecutive pulses (𝑖𝑖 = ±1), from every second pulse (𝑖𝑖 = ±1) and so on. The shape of any of these peaks is 
also determined by the electron pulse shape and emitter decay, hence we can define: 𝐴𝐴uncorr,i

𝑝𝑝 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎuncorr,i
𝑝𝑝 . 

𝐴𝐴uncorr,i
𝑝𝑝  contains the possible correlations between photons from different pulses. 

Taking the previous definitions into account, we can rewrite (S21) as 

𝑔𝑔pulsed
(2) (0) =

ℎb
𝑝𝑝 + ℎuncorr,0

𝑝𝑝

ℎuncorr,i
𝑝𝑝 =

𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐴𝐴b
𝑝𝑝 + 𝛼𝛼b𝐴𝐴uncorr,0

𝑝𝑝

𝛼𝛼b𝐴𝐴uncorr,i
𝑝𝑝 . 

S3a. Correlations between photons from the same pulse 

Correlations between photons from the same electron (𝑨𝑨𝐛𝐛
𝒑𝒑) 

The mean number of possible combinations of correlations between photons from the same electron, i.e., 
leading to bunching, is given in Eq. (S7), which we have to multiply by the number of electrons per pulse and 
the total number of pulses 𝑟𝑟 

𝐴𝐴b
𝑝𝑝 = 𝑟𝑟𝑟𝑟(𝑏𝑏 + 1)𝑚𝑚2𝜂𝜂2 � 𝑛𝑛𝑖𝑖Poiss(𝑛𝑛𝑖𝑖;𝑛𝑛𝑒𝑒)

∞

𝑛𝑛𝑖𝑖=0

= 𝑟𝑟𝑛𝑛𝑒𝑒𝑏𝑏(𝑏𝑏 + 1)𝑚𝑚2𝜂𝜂2. 

Here we have assumed that the number of electrons per pulse 𝑛𝑛𝑖𝑖 follows a Poisson distribution with expected 
value 𝑛𝑛𝑒𝑒. This will be the case in most experiments, such as in the beam blanker and photoemission of electron 
pulses described in the main text. However, we would obtain the same result if we consider the number of 
electrons per pulse fixed, given that 𝐴𝐴b

𝑝𝑝 scales linearly with 𝑛𝑛𝑖𝑖. 

Correlations between photons from different electron within the same pulse (𝑨𝑨𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮,𝟎𝟎
𝒑𝒑 ) 

Given the average number of emitted photons per electron 𝑁𝑁𝑝𝑝ℎ (Eq. (S9)), the number of combinations of 
correlations between photons from the same pulse, but different electron, becomes 

𝐴𝐴uncorr,0
𝑝𝑝 = 𝑏𝑏2𝑚𝑚2𝜂𝜂2 � 𝑛𝑛𝑖𝑖(𝑛𝑛𝑖𝑖 − 1)Poiss(𝑛𝑛𝑖𝑖;𝑛𝑛𝑒𝑒)

∞

𝑛𝑛𝑖𝑖=0

= 𝑟𝑟𝑟𝑟𝑒𝑒2𝑏𝑏2𝑚𝑚2𝜂𝜂2. 

(S21) 

(S22) 

(S23) 

(S24) 
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S3b. Correlations between photons from different pulses (𝑨𝑨𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮𝐮,𝒊𝒊
𝒑𝒑 ) 

Following from Eq. (S9), which gives the average of photons emitted per electron, and assuming 𝑛𝑛𝑖𝑖 electrons 
per pulse (Poisson-distributed), the average number of photons emitted per pulse is 

𝑁𝑁𝑝𝑝 = 𝑏𝑏𝑏𝑏𝑏𝑏 � 𝑛𝑛𝑖𝑖Poiss(𝑛𝑛𝑖𝑖;𝑛𝑛𝑒𝑒)
∞

𝑛𝑛𝑖𝑖=0

= 𝑛𝑛𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏. 

The number of possible correlations between photons from different pulses is therefore 

Auncorr,r
𝑝𝑝 = 𝑟𝑟(𝑟𝑟 − 1)𝑛𝑛𝑒𝑒2𝑏𝑏2𝑚𝑚2𝜂𝜂2, 

which is distributed over 2(𝑟𝑟 − 1) peaks, given that we do not count the peak at 𝜏𝜏 = 0, which would contain 
correlations between photons from the same pulse. We also need to take into account that the peaks at 𝜏𝜏𝑖𝑖 are 
contained within a triangular envelope, given that the number of possible correlations decreases as the delay 
between pulses increases, as explained in section S2f.   

Hence, the area below each peak at 𝜏𝜏𝑖𝑖 becomes 

𝐴𝐴uncorr,𝑖𝑖
𝑝𝑝 =

2 Auncorr,r
𝑝𝑝

2(𝑟𝑟 − 1)
= 𝑟𝑟𝑛𝑛𝑒𝑒2𝑏𝑏2𝑚𝑚2𝜂𝜂2. 

S3c. 𝒈𝒈(𝟐𝟐)(𝟎𝟎) for a pulsed electron beam 

Finally, inserting Eqs. (S23), (S24) and (S27) into Eq. (S22) we obtain 

𝑔𝑔pulsed
(2) (0) = 1 +

𝛼𝛼conv
𝛼𝛼b

𝑏𝑏 + 1
𝑛𝑛𝑒𝑒𝑏𝑏

= 1 +
𝛼𝛼conv
𝑛𝑛𝑒𝑒𝛼𝛼b

log(𝛾𝛾 − 1) − 1
log (𝛾𝛾 − 1)

. 

In which again we have used the relation between 𝑏𝑏 and 𝛾𝛾 given in Eq. (6) of the main text. 

S3d. Alternative calculation of 𝜸𝜸 for a pulsed electron beam 

In the case of a pulsed electron beam, we don’t need to calculate g(2)(0) to retrieve the excitation efficiency 𝛾𝛾, 
but we can simply divide the sum of Eqs. (S23) and by Eq. (S27), which results in  

𝐴𝐴b
𝑝𝑝 + 𝐴𝐴uncorr,0

𝑝𝑝

𝐴𝐴uncorr,𝑖𝑖
𝑝𝑝 = 1 +

𝑏𝑏 + 1
𝑛𝑛𝑒𝑒𝑏𝑏

= 1 +
1 − log (1 − 𝛾𝛾)
𝑛𝑛𝑒𝑒log (1 − 𝛾𝛾)

, 

which corresponds to Eq. (10) in the main text. In experiments, this ratio would be equivalent to dividing the 
sums of all the counts below the peak at 0 delay with the sum of the counts below any other peak. 

 S3e. Alternative derivation of 𝒈𝒈𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩
(𝟐𝟐) (𝟎𝟎) in photoemission 

The previous derivation of 𝑔𝑔(2)(0) assumes that bunching comes only from correlations between photons from 
the same electron. However, in the case of electron pulses obtained by photoemission, several electrons might 
excite the sample instantaneously (i.e., within a ps timescale, much smaller than the emitter decay). In this case 
bunching comes from correlations between photons from the same pulse, and it doesn’t matter whether they 
come from the same or different electrons. Here we show a derivation of 𝑔𝑔(2)(0) starting from the point that all 
electrons within a pulse will create bunching, and show that it results in the same expression as Eq. (12) (main 
text).  

(S25) 

(S26) 

(S27) 

(S28) 

(S29) 
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We assume that the duration of the electron pulses is much smaller than the emitter lifetime. Hence, all peaks 
will have the same shape. In particular, the area below the bunching peak (peak at 𝜏𝜏 = 0) is related to its height 
as: 𝐴𝐴b′ = 𝛼𝛼bℎb′ . Similarly, any other peak 𝜏𝜏𝑖𝑖(𝑖𝑖 ≠ 0) follows the same relation: 𝐴𝐴i′ = 𝛼𝛼iℎi′. Eq. (S22) can now be 
written as 

𝑔𝑔ultrashort,v2
(2) (0) =

𝐴𝐴b′

𝐴𝐴𝑖𝑖′
. 

We first calculate the area below the bunching peak, i.e., 𝐴𝐴b′ . The first steps are the same as in the continuous 
case. From Eq. (S6) we know that given 𝑏𝑏𝑖𝑖 bulk plasmons, the mean number of combinations of correlations is 
𝑏𝑏𝑖𝑖2𝑚𝑚2𝜂𝜂2. Assuming that we have 𝑛𝑛𝑖𝑖 electrons per pulse, each of them can create a different number of plasmons 
𝑏𝑏𝑖𝑖. The case of 𝑛𝑛𝑖𝑖 = 1 is derived in Eq. (S7). In the case of 𝑛𝑛𝑖𝑖 = 2, 

𝐴𝐴𝑛𝑛𝑖𝑖=2 = � � (𝑏𝑏1 + 𝑏𝑏2)2𝑚𝑚2𝜂𝜂2Poiss(𝑏𝑏1; 𝑏𝑏)
∞

𝑏𝑏2=0

∞

𝑏𝑏1=0

Poiss(𝑏𝑏2; 𝑏𝑏) = 2𝑏𝑏𝑚𝑚2𝜂𝜂2(2𝑏𝑏 + 1). 

In the general case of 𝑛𝑛𝑖𝑖 electrons per pulse, it can be shown (through a similar demonstration as in section S2d) 
that 

𝐴𝐴𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑏𝑏𝑚𝑚2𝜂𝜂2(𝑏𝑏𝑛𝑛𝑖𝑖 + 1). 

Finally, the number of electrons per pulse is not fixed but follows a Poisson distribution with expected value 
𝑛𝑛𝑒𝑒. Moreover, we need to multiply this by the total number of pulses exciting the sample during a measurement 
(𝑟𝑟). Hence, the average number of combinations of pair-correlations leading to bunching becomes 

𝐴𝐴b′ = 𝑟𝑟𝑟𝑟𝑚𝑚2𝜂𝜂2 � 𝑛𝑛𝑖𝑖(𝑏𝑏𝑛𝑛𝑖𝑖 + 1)Poiss(𝑛𝑛𝑖𝑖;𝑛𝑛𝑒𝑒)
∞

𝑛𝑛𝑖𝑖=0

= 𝑟𝑟𝑛𝑛𝑒𝑒𝑏𝑏𝑚𝑚2𝜂𝜂2(𝑛𝑛𝑒𝑒𝑏𝑏 + 𝑏𝑏 + 1). 

The area below each peak 𝑖𝑖, containing the number of combinations of pair-correlations between photons from 
different pulses (consecutive pulses, every second pulse, etc) was already calculated in Eq. (S27). Hence, 

𝐴𝐴𝑖𝑖′ = 𝐴𝐴uncorr,𝑖𝑖
𝑝𝑝 =

2 Auncorr,r
𝑝𝑝

2(𝑟𝑟 − 1)
= 𝑟𝑟𝑛𝑛𝑒𝑒2𝑏𝑏2𝑚𝑚2𝜂𝜂2. 

Inserting Eqs. (S34) and (S34) into Eq. (S30)(S30)  yields 

𝑔𝑔ultrashort,v2
(2) (0) = 1 +

𝑏𝑏 + 1
𝑛𝑛𝑒𝑒𝑏𝑏

, 

which is the same as 𝑔𝑔ultrashort,
(2) (0) given in Eq. (12) of the main text, which was obtained by setting 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =

𝛼𝛼b in Eq. (S28). 

 

S4. Full description of 𝒈𝒈(𝟐𝟐)(𝝉𝝉)  

In the previous sections we have derived the value of 𝑔𝑔(2)(0), but we have not discussed yet the full shape of 
the autocorrelation function as a function of delay (i.e., 𝑔𝑔(2)(𝜏𝜏)). In the continuous case, the shape of 𝑔𝑔(2)(𝜏𝜏) 
only depends on the bunching peak, while in pulsed experiments 𝑔𝑔(2)(𝜏𝜏) depends only on the temporal shape 
of the electron pulses, as will be seen below. 

(S30) 

(S31) 

(S32) 

(S33) 

(S34) 

(S35) 
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S4a. Shape of the bunching peak 

Given a certain function 𝑦𝑦(𝑡𝑡), the result of its autocorrelation is4 

ℎ(𝜏𝜏) = � 𝑦𝑦(𝑡𝑡)𝑦𝑦(𝑡𝑡 + 𝜏𝜏)
∞

−∞
𝑑𝑑𝑑𝑑 = 𝑦𝑦(−𝜏𝜏) ∗ 𝑦𝑦(𝜏𝜏). 

In the case of the bunching peak in a 𝑔𝑔(2)(𝜏𝜏) measurement, 𝑦𝑦(𝑡𝑡) = 𝑦𝑦emitter(𝑡𝑡) and ℎ(𝜏𝜏) = 𝑦𝑦bunching(𝜏𝜏), as 
given in Eq. (7) in the main text. 

S4b. Shape of uncorrelated peaks in a pulsed electron beam 

As we have already discussed, a 𝑔𝑔(2)(𝜏𝜏) measurement in pulse shows peaks centered at 0-delay and delays 
𝜏𝜏𝑖𝑖  (𝑖𝑖 = ±1, ±2 … ) corresponding to the time between pulses. The peak at 𝜏𝜏 = 0 has contributions from 
bunching, which result in a shape determined by the emitter (as shown in Eq. (S36)(S36) and Eq. (7) in the 
main text), and from uncorrelated photons, i.e., coming from different electrons. The peaks at 𝜏𝜏𝑖𝑖  (𝑖𝑖 ≠ 0) contain 
uncorrelated photons, i.e., coming from different pulses. In all cases in which there are correlations between 
photons from different electrons, the shape of the electron pulse also plays a role, together with the emitter 
decay. The probability of emitting a photon coming from a pulsed electron beam is given by the convolution 
between the electron pulse shape (𝑝𝑝(𝑡𝑡)) and emitter decay (𝑦𝑦emitter), i.e., 

𝑦𝑦(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) ∗ 𝑦𝑦emitter(𝑡𝑡). 

And from Eq. (S36), we know that the correlation between two photons with temporal spread 𝑦𝑦(𝑡𝑡) is 

ℎuncorr
𝑝𝑝 (𝜏𝜏) = [𝑝𝑝(−𝜏𝜏) ∗ 𝑦𝑦emitter(−𝜏𝜏)] ∗ [𝑝𝑝(𝜏𝜏) ∗ 𝑦𝑦emitter(𝜏𝜏)] = [𝑝𝑝(−𝜏𝜏) ∗ 𝑝𝑝(𝜏𝜏)] ∗ ℎb(𝜏𝜏), 

where in the last step we have used the definition of ℎb(𝜏𝜏) from Eq. (7) in the main text. 

S4c. Comparison to experiments: stretched exponential decay 

In order to test the validity of Eq. (7) (main text) (same as Eq. (S36)), describing the shape of the bunching 
peak, we performed time-correlated single-photon counting measurements (TCSPC) on the sample. We 
subsequently acquired a 𝑔𝑔(2)(𝜏𝜏) measurement with exactly the same conditions.  The TCSPC measurements 
were performed using a pulsed electron beam obtained by photoemission, with the same conditions as in the 
𝑔𝑔(2)(𝜏𝜏) photoemission experiments (here, 𝑛𝑛𝑒𝑒 = 347 electrons/pulse), and the data is collected in the same way 
as explained in refs.6,7. In these measurements, a histogram of the arrival time of photons following the electron 
pulse is built, and thus they directly show the emission decay.  Figure S3a shows the resulting decay trace. We 
observe that the trace can be best fitted using a stretched exponential 

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑦𝑦0𝑒𝑒
−� 𝑡𝑡
𝜏𝜏emitter

�
𝛽𝛽emitter

. 

In this case we find that 𝜏𝜏emitter = 11 ns and 𝛽𝛽emitter = 0.73. The histogram obtained in the corresponding 
𝑔𝑔(2)(𝜏𝜏) measurement is shown in Figure S3b. We observe that the bunching peak cannot be properly described 
with a stretched exponential using 𝜏𝜏emitter and 𝛽𝛽emitter as parameters (green curve). Instead, the result of solving 
numerically Eq. (S36) with the emitter parameters exhibits a very good agreement with the data (red curve). 

(S36) 

(S37) 

(S38) 

(S39) 
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The discrepancy between the shape of the 𝑔𝑔(2)(𝜏𝜏) curve and the actual emitter decay when the latter follows a 
stretched exponential could explain the different lifetimes obtained in ref. 7 when comparing 𝑔𝑔(2)(𝜏𝜏) and decay 
trace measurements. 

Single and double exponential decays 

In most systems, the decay mechanism can be approximated with a single or double exponential decay. Solving 

Eq. (S36) in those cases yields: 𝑦𝑦bunching(𝜏𝜏) ∝ 𝑒𝑒−𝜏𝜏/𝜏𝜏1  and 𝑦𝑦bunching(𝜏𝜏) ∝ 𝑒𝑒−
𝜏𝜏
𝜏𝜏1 + 𝑒𝑒−𝜏𝜏/𝜏𝜏2 , for single and double 

exponential decays, respectively. Therefore, in both cases the decay of the 𝑔𝑔(2)(𝜏𝜏) function directly gives the 
decay of the emitter. 

S4d. Comparison to experiments: square electron pulse 

The experiments using the beam blanker are performed using square electron pulses, with pulse width Δ𝑝𝑝 
determined by the blanking conditions (repetition rate and duty cycle) (see Section S6a). Hence, the pulse shape 
is given by 

𝑝𝑝(𝑡𝑡) = �1,         0 ≤ 𝑥𝑥 ≤ Δ𝑝𝑝
0,           otherwise, 

and the emitter decay 𝑦𝑦emitter(𝑡𝑡) follows the expression in Eq. (S39). The shape of the peaks at 𝜏𝜏𝑖𝑖(𝑖𝑖 ≠ 0) then 
become (Eq. (S38)) 

ℎuncorr
𝑝𝑝 (𝜏𝜏) = 𝑇𝑇(𝜏𝜏) ∗ [𝑦𝑦emitter(−𝜏𝜏) ∗ 𝑦𝑦emitter(𝜏𝜏)] = 𝑇𝑇(𝜏𝜏) ∗ ℎb(𝜏𝜏), 

where 𝑇𝑇(𝜏𝜏) is a triangular function with base Δ𝑝𝑝, resulting from the convolution of 𝑝𝑝(𝑡𝑡) with 𝑝𝑝(−𝑡𝑡). 

 

S5. Correction at long delays 
In a 𝑔𝑔(2)(𝜏𝜏) measurement, when the delay is longer than the typical correlation time (in our case, the emitter 
lifetime), we expect all events to be uncorrelated, thus exhibiting a constant amplitude. In the case of a 
continuous electron beam, this means that the 𝑔𝑔(2)(𝜏𝜏) curve is constant for 𝜏𝜏 ≫ 0, while in the pulsed case, we 

Figure S3: (a) TCSPC measurement on quantum wells, performed using a pulsed electron beam generated by photoemission 
(black) together with the corresponding fit with a stretched exponential (green). The best fit is obtained when 𝜏𝜏emitter =
11 ns and 𝛽𝛽emitter = 0.73. (b) 𝑔𝑔(2)(𝜏𝜏) measurement performed on the same area on the sample and identical conditions as 
in (a) (black), together with the result from Eq. (S36) using the emitter parameters from (a) (red) and a stretched exponential 
using the emitter parameters. The model (Eq. (S36)) shows a very good agreement with the data. 

(S40) 

(S41) 
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still observe peaks at the delays corresponding to the time between pulses, all of them with the same amplitude. 
Nevertheless, this is not typically what we observe in experiments. Figure S4 shows the raw data of two 𝑔𝑔(2)(𝜏𝜏) 
measurements, in continuous (a) and pulsed (b) mode. In both cases we observe that the number of counts 
decreases with increasing 𝜏𝜏, contrary to what we would expect from the theory. This is due to an experimental 
artifact in the Hanbury-Brown and Twiss experiment. In the experiment, the emitted light is split into two beams 
with a 50:50 beam splitter. Each beam is directed towards one detector, connected to the time correlator. When 
one of the detectors receives a photon, the time correlator starts counting until a photon is received on the second 
detector. Therefore, having a count at a certain delay 𝜏𝜏 means that the second detector does not receive any 
photon during the time 𝜏𝜏. This becomes very unlikely with increasing 𝜏𝜏, thus producing the effect observed in 
the figure. 

One way to avoid this artifact is by having a very low count rate on each detector, such that the probability of 
having two (uncorrelated) photons emitted within a time smaller than 𝜏𝜏 becomes very low. Nevertheless, this 
can result in very long acquisition times (in the order of hours) or low signal-to-noise ratios. In our case, we 
decided to keep the number of counts relatively high (typically 104 counts/s) and correct for this artifact during 
the data analysis. We observe that the evolution of the signal over 𝜏𝜏 due to this artifact follows an exponential 
decay, with average decay 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. The fits obtained when applying this decay are shown in Figure S4, for which 
we obtained 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 31 and 769 μs, respectively. This procedure is valid as long as 𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is much larger than 
the bunching decay and pulse width, in the case of a pulsed electron beam. Otherwise, artifacts due to this effect 
would also affect the value of 𝑔𝑔(2)(0). 

 

 

S6. Experimental details 
All measurements are performed while focusing the electron beam on a single spot on the sample. The electron 
current is measured by collecting the beam current through a Faraday cup and reading it with a picoammeter. 

S6a. Beam blanker 

The experiments using a beam blanker are performed using the same microscope as in ref. 7. In our case, a 
400 μm aperture is placed right below the pole piece. The distance between the blanking plates is kept to 2 mm 
for all experiments. In contrast to previous work, here we apply a square signal on one of the blanking plates, 
with peak-to-peak amplitude of 5V and offset 2.5V. The other plate is grounded.  This results in a square 

Figure S4: Raw data from a 𝑔𝑔(2)(𝜏𝜏) experiment with a (a) continuous and (b) pulsed (by photoemission) electron beam. 
The data show that the number of counts decrease for long delays due to an experimental artifact in the HBT experiment. 
The green and red curves show the fits using an exponential decay to account for this artifact. The obtained average decays 
are  𝜏𝜏𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 31 and 769 𝜇𝜇𝜇𝜇 for (a) and (b), respectively. The insets show a zoom in for small delays, in which this artifact 
is not visible. 
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electron pulse, with pulse width determined by the duty cycle 𝐷𝐷 and repetition rate 𝐹𝐹, i.e., Δ𝑝𝑝 = (1 − 𝐷𝐷)/𝐹𝐹. In 
order to confirm the shape of the electron pulse, we performed decay trace measurements on the QWs while 
blanking the beam. Figure S5 shows two examples of traces, both obtained using 𝐷𝐷 = 0.6 and repetition rate 
𝐹𝐹 = 0.5 and 6 MHz, respectively. We fitted the data using the following equation 

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

𝐵𝐵, 𝑡𝑡 < 𝑡𝑡0

𝐴𝐴 �1 − 𝑒𝑒−�
(𝑡𝑡−𝑡𝑡0)
𝜏𝜏 �

𝛽𝛽

� + 𝐵𝐵, 𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1

𝐴𝐴𝑒𝑒−�
(𝑡𝑡−𝑡𝑡1)
𝜏𝜏 �

𝛽𝛽

+ 𝐵𝐵, 𝑡𝑡 > 𝑡𝑡1 ,

 

where 𝜏𝜏 = 8.6 ns and 𝛽𝛽 = 0.63 are the parameters describing the QW radiative decay, 𝐴𝐴 is the amplitude of 
the signal and 𝐵𝐵 is the background signal. The pulse width can be obtained from Δ𝑝𝑝 = 𝑡𝑡1 − 𝑡𝑡0. In the 
experiments we obtain pulse widths of 796 and 62 ns, for Figure S5(a) and (b) respectively, which are very 
close to the theoretical values at these conditions (800 and 66 ns, respectively). These experiments were 
performed using an electron energy of 10 keV, but we do not expect significant deviations when changing the 
electron energy to 8 keV. 

 

Even though the experimental data shows an almost perfect square electron pulses, small deviations from this 
can arise when changing parameters, especially when increasing the duty cycle and repetition rate. In order to 
account for this, we measured the electron current in continuous mode 𝐼𝐼𝑐𝑐 (i.e., in blanking conditions but without 
any signal driving the blanking plates) and in pulsed 𝐼𝐼𝑝𝑝 (square signal driving one of the plates). The relation 
between both magnitudes is given by 𝐼𝐼𝑝𝑝 = 𝐼𝐼𝑐𝑐(1 − 𝐷𝐷). Figure S6a shows the value of electron current in pulsed 
𝐼𝐼𝑝𝑝 measured at different repetition rates. These measurements were performed at 8 keV and 𝐷𝐷 = 0.95, with the 
same blanking conditions as for the 𝑔𝑔(2)(𝜏𝜏) measurements using the blanker in the main text. The figure also 
shows the expected value of 𝐼𝐼𝑝𝑝 (red curve), given a continuous current of 𝐼𝐼𝑐𝑐 = 213.9 pA. We observe that the 
measured values are slightly lower than the expected ones, and the discrepancy increases with increasing 
repetition rate. These measured values of 𝐼𝐼𝑝𝑝 were used to calculate the number of electrons per pulse in Fig. 3 
of the main text. The pulse duration of the electron beam can also be extracted from these measurements, given 

that Δ𝑝𝑝 = 𝐼𝐼𝑝𝑝
𝐼𝐼𝑐𝑐𝐹𝐹
� . Figure S6b shows the value of pulse width obtained using the experimental values of 𝐼𝐼𝑝𝑝 (black 

dots) compared to the theoretical values, given by Δp = (1 − 𝐷𝐷)𝐹𝐹 (red curve). 

(S42) 

Figure S5: Decay traces on the QWs obtained using an electron beam blanker, with repetition rate (a) 0.5 and (b) 6 MHz. 
The fits are obtained using Eq. (S42), showing that the electron pulses can be described as a square pulse with pulse width 
of 796 and 62 ns, for (a) and (b) respectively. 
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S6b. Laser-driven electron source (photoemission) 

Ultrashort (ps) pulses are obtained by focusing the 4th harmonic (257 nm) of an Yb-doped femtosecond laser 
(𝜆𝜆 = 1035 nm, 250 fs pulses) onto the electron cathode. The experiments are performed using a Quanta 250 
FEG SEM. In order to suppress continuous emission, the filament current is reduced from 2.35 down to 1.7 A. 
The extractor voltage is also lowered from the typical 4550V value down to 650V. These settings allow us to 
achieve a high number of electrons per pulse, at the expense of lower spatial resolution, as explained in ref 7.  

 

S7. Cathodoluminescence with 8 keV electrons 
Figure S7 shows the CL spectrum obtained when exciting the sample with a continuous 8 keV electron beam, 
corresponding to the energy used in the experiments using the beam blanker. Most of the emission comes from 
the QW emission (410-490 nm). The inset shows a schematic of the structure of the sample together with Monte 
Carlo simulations of the trajectory of an 8 keV electron inside the sample, performed with the Casino software8. 
Each dot in the plot corresponds to an inelastic collision of the primary electron beam with the sample, while 
the color indicates the energy of the primary electron beam. We observe that barely any electron reaches the 
QWs, thus explaining the low excitation efficiency obtained at 8 keV (𝛾𝛾 = 0.05). 

Figure S6: (a) Electron beam current measured in pulsed conditions using a beam blanker as a function of repetition rate. 
The red curve represents the theoretical current that we should obtain given a continuous current of 213.9 pA, and duty 
cycle of 0.95. (b) Pulse duration extracted from the experimental values of electron current in pulsed in (a), together with 
the theoretical value of the pulse width (red curve). 
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S8. Dependence of QW emission decay on area 
In the main text we show 𝑔𝑔(2)(𝜏𝜏) measurements performed using the different electron beam configurations 
(continuous, pulsed with blanker and pulsed with photoemission), in each case exhibiting different decay 
lifetimes (𝜏𝜏emitter and 𝛽𝛽emitter). Here we prove that the main reason for this discrepancy is the inhomogeneity 
in the sample. Figure S8 shows 𝑔𝑔(2)(𝜏𝜏) measurements performed using a continuous electron beam on different 
spots on the sample. The curves were obtained at 10 keV with beam currents of 10.6, 14.1 and 34 pA (green, 
blue and yellow curves, respectively). Each experimental curve (data points) is accompanied by the 
corresponding fit (solid lines), obtained by solving numerically Eq. (S36) when 𝑦𝑦(𝑡𝑡) is a stretched exponential. 
We observe that 𝜏𝜏emitter strongly depends on the position of the sample, ranging from 3.7 to 7.3 in these three 
examples. Instead, 𝛽𝛽emitter remains in the 0.61-0.64 range. 

Figure S7: CL spectrum obtained after excitation with an 8 keV 
continuous electron beam (213.5 pA). Inset: schematic of the 
InGaN/GaN quantum well stack overlaid with the simulations of the 
trajectory of an 8 keV electron inside the sample. 
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Figure S8: 𝑔𝑔(2)(𝜏𝜏) measurements obtained with a 10 keV continuous electron beam at three different spots on the sample. 
The solid lines are the fits from Eq. (S36) when 𝑦𝑦(𝑡𝑡) is a stretched exponential, with fit parameters 𝜏𝜏𝑒𝑒 ≡ 𝜏𝜏emitter and 𝛽𝛽e ≡
𝛽𝛽emitter. 
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