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SI1. Ray-optics description of Smith Purcell metalenses.
The design and operation of a Smith Purcell metalens can be described by a ray-optics approach as 
proposed in Ref. [1]. In this picture, the wave front of Smith Purcell radiation is shaped by introducing a 
relation between the angle  that a ray encloses with the direction of electron propagation, and the Θ
position  from which it is emitted along the electron trajectory. Assuming a generic phase profile  𝑧 𝜙(𝑧)
and a nominal emission wavelength we can write this relation as [1]𝜆0, 

cos Θ(𝑧) =
𝜆0

2𝜋
𝑑𝜙(𝑧)

𝑑𝑧 ,

which upon insertion into the conventional SP relation  yields a spatially varying 𝜆 = Λ(𝛽 ―1 ― cosΘ)/𝑚
grating periodicity, with  the normalized electron velocity and  the diffraction order. To model 𝛽 = 𝑣/𝑐 𝑚
our metalenses, we introduce a cylindrical phase profile , with the negative and 𝜙(𝑧) =∓ 2𝜋 𝑧2 + 𝑓2/𝜆0
positive signs representing converging and diverging wave fronts, respectively. The corresponding 
periodicity profile then reads

Λ(𝑧) =
𝑚𝜆0

𝛽 ―1 ±
𝑧

𝑧2 + 𝑓2

,                                                                (S1)

as given by Eq. (3) of the main text. 
We can now apply the above ray-optics formalism to study chromatic aberrations of the 

metalenses at off-nominal wavelengths  To this end, we insert Eq. (S1) back into the general SP 𝜆 ≠ 𝜆0.
relation with  and solve for the emission angle, yielding an expression of the form𝑚 = 1

cos Θ(𝑧) =∓
𝜆
𝜆0

𝑧

𝑧2 + 𝑓2 + (1 ―
𝜆
𝜆0)𝛽 ―1.

For emission angles near the surface normal, we introduce the substitution  and apply a small-𝜃 = Θ ―𝜋/2,
angle approximation to find

𝜃(𝑧)≅ ∓
𝜆
𝜆0

𝑧
𝑓 + (1 ―

𝜆
𝜆0)𝛽 ―1 =∓

𝑧
𝑓(𝜆)

+ Δ𝜃(𝜆)

with  and . It follows that the emission of the metalenses is subject to both 𝑓(𝜆) =
𝜆0

𝜆 𝑓 Δ𝜃(𝜆) = (1 ―
𝜆
𝜆0)𝛽 ―1

longitudinal and lateral chromatic aberrations as represented by the parameters  and 𝑓(𝜆) Δ𝜃(𝜆), 
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respectively. These aberrations show opposing trends for red and blue shifts  relative to  as also Δ𝜆 𝜆0,
illustrated in Fig. S1a for  nm and  nm. In addition, the model reveals a distorted caustic Δ𝜆 =± 30 𝜆0 = 580
nature of the focusing effect at off-nominal wavelengths, in good agreement with the rigorous full-wave 
numerical near-field simulations shown in Fig. 1 of the main text. Notably, since  scales inversely  Δ𝜃(𝜆)
proportional to the electron velocity, the lateral chromatic aberrations can be compensated for a given 
wavelength by adjusting the electron energy. We demonstrate this effect in Fig. S1b by the example of a 
metalens with a nominal design wavelength of 580 nm at 5 keV excitation electron energy, showing a 
caustic off-axis focus for emission at 590 nm wavelength. We find that by increasing the electron energy 
to 30 keV, the desired focal spot is recovered, and aberrations are largely eliminated. However, we note 
that due to the wave nature of the emitted light, focusing is limited by diffraction, and that an Airy-beam-
like pattern is introduced to the caustic focusing effect at off-nominal wavelengths. 

Fig. S1: Ray-optics model of the Smith Purcell metalens. a Rays emitted by a converging lens with a nominal design 
wavelength  nm, for different wavelengths  nm   nm, and  nm. For the off-nominal 𝜆0 = 580 𝜆 = 550 , 580 610
wavelengths, we observe both lateral and longitudinal aberrations, combined with a caustic distortion of the focus. 
b Chromatic aberration correction by tuning the electron energy. A converging metalens with nominal design 
wavelength  nm at keV incident electron energy shows slight chromatic aberrations at  nm. The 𝜆0 = 580 5 𝜆 = 590
aberrations are corrected by increasing the electron energy to 30 keV.

SI2. Analytical treatment of Smith Purcell near-field coupling.
In the following, we derive an analytical framework that allows us to correlate the far-field characteristics 
of our Smith Purcell metalenses with the underlying electron-near-field coupling mechanism. To this end, 
we consider first a generic photonic system that interacts with a point-like free electron of kinetic energy 

. The probability for the electron to excite the system at frequency and thus suffer a corresponding 𝐸0 𝜔 
energy loss  can be written as [2]ℏ𝜔 ≪ 𝐸0

𝑝loss = | 𝑒
ℏ𝜔

∞

∫
―∞

d𝑧 𝓔(𝐫 ⊥ ,0,𝑧) ⋅ 𝐳 𝑒
―𝑖

𝜔
𝑣𝑧|

2

,                                                (S2)

where  is the electron charge,  is the electron velocity,  is the unit vector in the direction of electron 𝑒 𝑣 𝐳
propagation,  is the electron-induced electric field amplitude and  denotes the 𝓔(𝐫 ⊥ ,𝑧) 𝐫 ⊥ ,0 = (𝑥0,𝑦0)
transverse electron coordinates. The coupling integral governing Eq. (S2) corresponds to the Fourier 
transformation of the electric field as projected onto the electron trajectory at an electron-velocity-
dependent spatial frequency . Physically, this imposes a phase-matching condition which can be 𝑞 = 𝜔/𝑣
only fulfilled if light is slowed down by either material dispersion or boundary conditions, i.e. in the near-
field of a nanostructure. 
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In our Smith Purcell experiments, the measured radiation patterns are determined by the far-field 
envelope  of the electron-induced electric field  in Eq. (S2). Similar to the electron energy 𝓔∞(𝐫,𝜔) 𝓔(𝐫,𝜔)
loss probability , the patterns thus ultimately depend on the electron-light coupling efficiency as 𝑝loss
shown below. To this end, we consider grating structures that are patterned along the  direction, in line  𝑧
with the convention used in the main text. For an observer that is located at a large distance  away from 𝑟
the source, we can write the measured differential photon emission probability as [3]

𝑑2𝑝rad

𝑑Ω𝑑𝜔 =
𝑟2𝜀0𝑐
𝜋ℏ𝜔

|𝓔∞(𝑟𝐧,𝜔)|2,

where is the direction of observation,  denotes an infinitesimal small collection solid angle element, 𝐧 𝑑Ω
and  is the vacuum permittivity. Under the simplifying assumption of a lossless medium, we may choose 𝜀0
to expand the electric field in terms of normal modes  [3] which are uniquely defined by the boundary-𝐮𝐤
value problem imposed by the grating geometry. This permits an ansatz according to the following 
considerations: The near field of a regular SP grating has to inherit the grating periodicity , giving rise to Λ
Fourier waves with excess momentum , where  is the harmonic order of the reciprocal grating 𝑚ℏ𝑘𝑔𝐳 𝑚
constant . For the chirped metalenses, the periodicity slowly varies along , thus the near field 𝑘𝑔 = 2𝜋/Λ 𝑧
acquires a local phase that can be approximated by an integral of the form . For orders , 𝑚∫𝑧

0d𝑧′
2𝜋

Λ(𝑧′) |𝑚| > 0

the excess momentum provided by the different grating geometries ensures phase-matching between the 
electron and the light wave while causing an evanescent decay in the direction perpendicular to the grating 
plane, here taken to be the direction. Hence, the normal modes of the periodic reference grating and 𝑥 
the chirped metalenses admit expressions of the form

𝐮𝐤(𝐫) = {  ∑
𝑚

𝐀𝑚(𝐫 ⊥ ,𝐤)𝑒
𝑖( 𝑘2 ― 𝑘2

𝑦 ― (𝑘𝑧 +
2𝜋
Λ 𝑚)2

𝑥 + 𝑘
𝑦

𝑦 + (𝑘𝑧 +
2𝜋
Λ 𝑚)𝑧)

,periodic grating,

∑
𝑚

𝐀𝑚(𝐫 ⊥ ,𝐤)𝑒
𝑖( 𝑘2 ― 𝑘2

𝑦 ― (𝑘𝑧 +
2𝜋

Λ(𝑧)𝑚)2

𝑥 + 𝑘
𝑦

𝑦 + 𝑘𝑧𝑧 + 𝑚∫
𝑧

0
d𝑧′

2𝜋
Λ(𝑧′))

,metalens.

Importantly, we stress that the mode index  refers to the plane-wave  component of the 𝐤 = 𝑘𝐧 (𝑚 = 0)
modal wave vector, i.e. the component which is eventually scattered into the far-field. Resorting to a 
classical Green’s function formalism, in the Appendix we derive Eq. (S3) in terms of these normal modes 
as

𝑑2𝑝rad

𝑑Ω𝑑𝜆 =
𝛼

𝜆3
|𝐀0(𝑘𝐧)|2|∫d𝑧 𝐮𝑘𝐧(𝐫 ⊥ ,0,𝑧) ⋅ 𝐳 𝑒

―𝑖
𝜔
𝑣𝑧|

2

,                               (S3)

where  (the Fourier coefficient of the plane-wave component of the mode) captures the |𝐀0(𝑘𝐧)|2

material- and geometry-dependent angular radiation pattern of mode ,  is the fine 𝐤 𝛼 =  𝑒2/4𝜋𝜖0ℏ𝑐
structure constant, and . Notably, under the given assumptions, the above expression  𝑘 = 2𝜋/𝜆 = 𝜔/𝑐 
suggests that only a single mode  contributes to the far-field amplitude of light emitted into a given 𝐮𝑘𝐧(𝐫)
direction of observation  and wavelength . Moreover, we find that up to a different normalization, the 𝐧 𝜆
dependence of Eq. on the modal near-field is indeed equivalent to the form of the electron energy (S3) 
loss probability given by Eq. (S2), in good agreement with a rigorous quantum mechanical treatment of 
the problem for small dipolar emitters [4].  Substituting the above ansatz with , and limiting 𝑘𝑧 = 𝑘cos Θ
ourselves to a contribution by the  Fourier component (corresponding to first-order Smith-Purcell 𝑚 = 1
emission), we eventually find
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𝑑2𝑝rad

𝑑Ω𝑑𝜆 =
𝛼

𝜆3
|𝐀0(𝑘𝐧)|2|𝐀1(𝐫 ⊥ ,0,𝑘𝐧) ⋅ 𝐳|2{ | ∞

∫
―∞

d𝑧𝑒 ―𝜅𝑥0(𝑧)𝑒
𝑖𝑘(cos Θ ― 𝛽 ―1 +

𝜆
Λ)𝑧|

2

,  grating

  | ∞

∫
―∞

d𝑧𝑒 ―𝜅𝑥0(𝑧)𝑒
𝑖𝑘(𝑧cos Θ ― 𝑧𝛽 ―1 + ∫𝑑𝑧

𝜆
Λ(𝑧))|

2

,metalens

,(S4)

where  defines the evanescent decay of the near-field amplitude away from the grating 𝜅 ≈
2𝜋
𝜆 𝛽 ―2 ― 1

plane. We note that in the above expressions the electron is permitted an incident grazing angle  𝛼𝑡 ≠ 0
such that . 𝑥0(𝑧) = 𝑥0 + tan 𝛼𝑡(𝑧 ― 𝑧0)

In general, the Fourier coefficients defining the terms  and  introduce a |𝐀1(𝐫𝑇,𝑘𝐧) ⋅ 𝐳|2 |𝐀0(𝑘𝐧)|2

highly non-trivial dependence of the metalens emission patterns on both the observation direction  and 𝐧
emission wavelength . Thus, for a quantitative comparison between theory and experiment, we resort to 𝜆
a numerical solution of Maxwell’s equations in the main text, taking into account the details of the 
metalens geometry and material dispersion. However, fortunately, the relevant features associated with 
the electron near-field coupling mechanism are fully recovered by the remaining integral terms. To analyze 
this most clearly, we will continue assuming a vanishing grazing angle , while a complementary 𝛼𝑡 ≈ 0
discussion of angled grazing incidence is provided in section SI3. 

From the upper entry of Eq. (S4), we immediately recover the conventional first-order SP 

dispersion relation through a delta function , strictly reflecting the electron-
𝑑2𝑝rad

𝑑Ω𝑑𝜆 ∝ 𝛿(𝜆 ― Λ(𝛽 ―1 ― cos 𝜃))
light phase-matching condition addressed above. In the measurements, spectral broadening is introduced 
by a finite interaction range , as also reproduced by a truncation of the integral in Eq. (S4). This is 𝐿
illustrated in Fig. S2a, using the structural parameters of our reference grating. The lower entry of Eq. (S4) 
is further specified by substituting  from Eq. (S1), permitting us to write the local phase accumulation Λ(𝑧)
of the first order grating mode ( ) as𝑚 =  1

𝑧

∫
0

d𝑧′
2𝜋

Λ(𝑧′) =
2𝜋
𝜆0∫(𝑐

𝑣 ±
𝑧

𝑧2 + 𝑓2)𝑑𝑧 =
2𝜋
𝜆0

(𝑐
𝑣𝑧 ± 𝑧2 + 𝑓2).                     (S5)

Thus, we finally obtain an expression of the form

𝑑2𝑝rad

𝑑Ω𝑑𝜆 ∝ | 𝐿/2

∫
―𝐿/2

d𝑧𝑒
𝑖(2𝜋

𝜆 cos Θ +
2𝜋
𝜆0 (1 ―

𝜆0

𝜆 )𝛽 ―1)𝑧

𝑒
± 𝑖

2𝜋
𝜆0

𝑧2 + 𝑓2 ― 𝜅(𝜆)𝑥0(𝑧)|
2

,                          (S6)

where the integral was adapted to the finite physical extent of the metalenses. Calculated probability 
patterns for the converging and diverging metalenses per the design parameters used in the main text are 
shown in Fig. S2b and c, respectively. The theory accurately reproduces the occurrence of multiple curved 
emission bands over a wide spectral bandwidth, in good agreement with the experimental data. However, 
as opposed to the measurements, the calculated radiation patterns are identical for the two types of 
metalenses. This is because the opposing curvature of the emission wavefronts cannot be distinguished 
based on their far field intensity, but requires additional phase information. Thus, under ideal conditions 
as assumed in theory, the metalens emission patterns only differ in the near-field (see simulations in Fig. 
1 in the main text). Yet, as detailed in the main text, we stress that in practice the wavefront curvatures 
can be told apart owing to defocusing aberrations of the experimental light collection setup. Furthermore, 
in the following section we show that a non-zero grazing angle leaves an opposite signature on the far-
field emission of the two lens types.
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Fig. S2: Analytical model. Calculated radiation patterns of a the periodic reference grating, b the converging 
metalens, and c the diverging metalens considering only the contribution of electron-near-field phase-matching. 
Calculations are according to the design parameters used in the main text, assuming 30-keV electron excitation at a 
constant grazing distance of  nm. For the metalenses, the theory accurately predicts a distribution over 𝑥0 = 20
multiple curved emission bands, in good agreement with the experimental observations. However, under the given 
assumptions, there are no far-field features distinguishing the two lens types (these are discussed in section SI3).

SI3. Smith Purcell excitation at grazing angled incidence.
In our experiments, the radiation patterns of the converging and diverging metalenses are clearly 
distinguished by their spectral intensity distributions. As demonstrated below, the main factor responsible 
for this difference can be identified as a non-vanishing grazing angle  between the incident electron beam 
and the sample plane, as well as a finite beam divergence. To analyze this effect, in the following, we 
distinguish positive (i) and negative (ii) grazing angles for which the electrons propagate away from and 
towards the sample plane, respectively. 

Using our analytical model theory derived in section SI2, in Fig. S3 we show a comparison between 
the metalens radiation patterns for perfect grazing incidence with those predicted for small positive (i) 
grazing angles of  and . In this case, electrons are passing closer by the top of the metalenses 0.05° 0.1°
than by the bottom, causing a rapid exponential decay of the electron-near-field coupling according to Eq. 
(S6). As a result, the converging and diverging metalens radiation patterns show opposing spectral skews 
towards the longer and shorter emission wavelengths, respectively. Notably, this effect is in good 
agreement with the linear relation between the SP emission wavelength and the position along the 
grating, namely, the local grating period that is prevalent in the interaction. This suggests that different 
radiation bands can be associated with different sections of the metalenses, and that their intensity varies 
due to the aforementioned change in the near-field coupling with position. However, we note that the 
analytic theory does not recover spectral features associated with material dispersion or the metalens 
geometry, requiring an analysis in terms of numerical simulations as provided in the main text.

To illustrate the effect of negative (ii) grazing angles, Fig. S4 shows experimental data for -𝛼𝑡 ≈  
1˚ to -2˚. In this case, the interaction is terminated upon collision of the electrons with the sample plane 
at just a few microns from the top of the gratings. As a result, the converging and diverging metalens 
radiation patterns are strongly skewed towards the long and short emission wavelengths, respectively, in 
good agreement with the theory. In contrast, the emission of the regular SP grating maintains overlap with 
the expected SP dispersion relation, given that the grating period is constant. However, we note that a 
shorter interaction length results in both spectral broadening and a reduced radiation efficiency. 
Moreover, we observe that the emission probability is gradually damped towards decreasing emission 
wavelengths. For grazing distances on the order of a few tens of nanometers, this could be related to the 
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exponential decay term in Eqs. (S4), predicting stronger coupling to near-field components with a larger 
wavelength and thus a smaller evanescent decay constant .𝜅

 

Fig. S3 Metalens radiation patterns for electron incidence under small positive grazing angles. Analytical model 
calculations assuming 30 keV electron excitation at a minimum grazing distance of 20 nm. For increasing grazing 
angle, we consistently observe a skew of the converging and diverging metalens radiation patterns towards the long 
and short emission wavelengths, respectively. This can be related to an exponential dependence of the SP excitation 
efficiency with the grazing distance, as is evident from Eq. (S6).

Finally, we consider a combination of both positive and negative grazing angles, allowing us to 
emulate the effect of a divergent electron beam. To also account for the combined effects of material 
dispersion and geometrical features, we performed numerical simulations for a range of electron 
trajectories that span grazing angles  between  and , and  and  The resulting 𝛼𝑡 ―0.05° 0.05° ―0.1° 0.1°.
radiation patterns are plotted in comparison to the experimental data in Fig. S5. For reference, the results 
obtained for perfect grazing incidence are also shown. Notably, we observe clear spectral trends that are 
consistent with the intuition gained by our analytical model theory. The best agreement between 
experiment and simulations is found assuming a range of angles , as stated in the ―0.05° ≤ 𝛼𝑡 ≤ 0.05°
main text. This corresponds to a beam divergence angle smaller than 2 mrad, constituting a reasonable 
value in scanning electron microscopy [5]. Yet, we conclude that the exact form of the acquired metalens 
radiation patterns is very sensitive to a combination of parameters including the grazing distance, grazing 
angle, beam divergence but also the exact sample geometry and material dispersion. 
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Fig. S4: Experimental SP radiation patterns for truncated electron-beam-sample interaction at negative grazing 
angles. A 30-keV electron beam excites a the reference grating, b the converging metalens, and c the diverging 
metalens at a small negative grazing angle  of -1˚ to -2˚. In this configuration, the beam axis intersects with the 𝛼𝑡
sample plane after a few microns distance from the top of the structures, abruptly truncating the interaction. For 
reference, the red line in a represents the theoretical SP dispersion for a grating with a 189 nm period.
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Fig. S5: Numerical hybrid simulations of metalens radiation patterns for divergent electron beam excitation. Each 
simulation incorporates 5 electron trajectories within the angular range specified in a, b, and c. The best agreement 
between simulations and the experimental data is obtained for a beam divergence of  (as also ―0.05° ≤ 𝛼𝑡 ≤ 0.05°
seen from the emission spectra for selected angles shown on the right). As in the experiments, numerical data are 
obtained for 30 keV incident electron energy, with the grazing distance assumed to be 5 nm.
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SI4. Numerical FDTD simulations.
To numerically simulate free-electron radiation over a broad spectral range, we resort to a commercial 
three-dimensional full-wave finite-difference in the time domain (FDTD) solver (Lumerical Inc., FDTD 
solutions). The electron beam excitation was emulated by an array of dipoles with a phase-lag determined 
by the electron velocity . For a point-like electron propagating along the  direction with transverse 𝑣 𝑧
coordinates we can write the associated beam current as𝐫 ⊥ ,0 = (𝑥0,𝑦0) 

𝐣(𝐫,𝜔) = 𝐳𝑒𝛿(𝐫 ⊥ ― 𝐫 ⊥ ,0)𝑒
𝑖
𝜔
𝑣𝑧

,
while a point-like dipole is represented by a dipole-moment of the form 

𝐝(𝐫,𝜔) = 𝑒
𝑖
𝜔
𝑣𝑧0

𝐝(𝜔)𝛿(𝐫 ⊥ ― 𝐫 ⊥ ,0)𝛿(𝑧 ― 𝑧0).
Thus, by choosing  we obtain a source current of the form𝐝(𝜔) = 𝑑(𝜔)𝐳

𝐣(𝐫,𝜔) = 𝑑(𝜔)𝐳𝛿(𝐫 ⊥ ― 𝐫 ⊥ ,0)∑
𝑛

𝑒
𝑖
𝜔
𝑣𝑧𝑛

𝛿(𝑧 ― 𝑧𝑛)

with  spaced by a distance much smaller than the wavelength (  nm). The electron-induced nearfield 𝑧𝑛 5
was recorded using a frequency domain monitor placed  μm away from the electron source, either 1
parallel or perpendicular to the grating plane (depending on the orientation of the assumed collection). 
To reveal the focusing and defocusing effects shown in Fig. 1 of the main text, the recorded vectorial fields 
were numerically propagated in free space to a range of distances from  μm to  μm. The far-field data 1 40
used for the Zemax ray-tracing analysis in Fig. 4 of the main text were obtained by a software integrated 
near-to-far-field transformation algorithm. 

SI5. SP excitation efficiency.
As detailed in ref. [6], the excitation efficiency for visible and near-infrared SP radiation by electrons of 5-
30 keV in an SEM can approach the order of 10-3-10-4. In our numerical simulations, the electron excitation 
is modeled by a chain of dipole sources with a phase-lag determined by the electron velocity, inducing an 
evanescent field (see previous section). Thus, we can relate the optical power radiated into the far-field to 
the combined power of all dipole sources with a total of 4 pW. Fig. S6 shows the emitted spectral power 
density, both for the periodic reference grating and for the converging metalens, using the design 
parameters defined in the main text. We assume perfect grazing electron incidence at 30 keV kinetic 
energy with a total interaction range of 20 µm (close to the experimental conditions). By integrating over 
the corresponding spectra, we extract radiation efficiencies of and  for the periodic 2.3 × 10 ―3 2.4 × 10 ―3

grating and the converging metalens, respectively, in good agreement with the theoretical expectations.
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Fig. S6: Numerically simulated power density spectra of the Smith-Purcell grating and the converging metalens. In 
order to obtain the total SP excitation efficiency, the spectral power is integrated over all emission wavelengths and 
divided by the total dipole chain input power of 4 pW, yielding estimated efficiencies of and , 2.3 × 10 ―3 2.4 × 10 ―3

respectively. 

SI6. Geometrical variations in the electron-near-field coupling efficiency.
Close inspection of the near-field simulations shown in Fig. 1 of the main text reveals a variance in intensity 
along the surface of the metalenses. For a fixed emission wavelength, we can relate this effect to variations 
in the electron-near-field coupling efficiency as a function of the grating period, i.e. the exact spatial near-
field distribution of the individual grating bars. To support this interpretation, Fig. S7 shows the electron-
induced near-field intensity upon excitation of different gratings with periodicities in the range of 150 nm 
to 250 nm. Simulations are performed for a fixed emission wavelength of  nm, assuming 30 keV 𝜆 = 580
incident electron energy at a grazing distance of 5 nm. The data qualitatively capture the intensity 
variations observed near the surface of the metalenses, showing a similar decay with increasing period. 
For completeness, we note that the coupling efficiency also scales with the emission wavelength as 
determined by the evanescent decay constant  of the near-field away from the grating plane in Eq. (S6). 𝜅
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Fig. S7: Electron-induced near-field intensity of an SP grating as a function of the grating period.  Simulations are 
performed assuming excitation at 30 keV incident electron energy, a grazing distance of 5 nm, and nm 𝜆 = 580 
emission wavelength. Clearly, we see a global decrease in near-field intensity with the grating period, in good 
agreement with the intensity variations observed a few nanometers from the surface of the metalenses in Fig. 1 of 
the main text.



12

SI7. SRR meta-atom near-field simulations.
For the subsequent discussion, we consider a decomposition of the SRR meta atoms into two parts – a 
dimer of rod-like antennas connected by a wire which forms another rod-like antenna (a similar structure 
was rigorously explored in ref. [7]). For an electron passing near the gapless edge, the induced near field 
is expected to be governed by the modes of the connecting rod. Thus, the SRR would primarily emit 
vertically (V) polarized radiation, similar to the emission from an extended grating ruling. On the other 
hand, for an electron passing near the gap, we expect dominant coupling to the dimer modes, increasing 
the component of H polarization of the emitted radiation. This is corroborated by the polarization ellipse 
in Fig. 5 of the main text, as well as the total electron-induced near-field distributions shown in Fig. S8a at 
550 nm excitation wavelength for the electron passing near the connecting wire and the gap, respectively. 
At the second chosen working point of 642 nm shown in the main text, there is a dip in the reflectivity for 
the  polarization (see the reflection analysis of Fig. 5 in the main text). Thus, in general, more energy is 𝑉
transferred to the near-field of the V-polarization mode (which does not necessarily indicate subsequent 
coupling to radiation). This effect seems to extend the SRR mode beyond the rod excitation, when the 
electron impinges at -25 nm relative to the SRR center (left). The dimer excitation continues to be 
dominant when the electron passes at +25 nm (right).

Fig. S8: SRR near field excited by a passing electron at the two design wavelengths of  nm and  𝝀𝟎 = 𝟓𝟓𝟎 𝝀𝟎 = 𝟔𝟒𝟐
nm.  a for the  nm working point: the electron passes near the rod (left) or near the dimer (right) and excites 𝜆0 = 550  
dipole either along (left) or perpendicular to (right) its trajectory. b for the  nm: a near-resonant frequency 𝜆0 = 642
(according to the reflection spectra of Fig. 5 in the main text). Here, more energy is coupled between the rod and 
dimer near field modes, even when the electron passes near the rod (left), but the far-field polarization is still 
dominantly vertical (along the electron trajectory). Right: near field distribution when the electron passes near the 
dimer, again exciting mostly horizontal far-field polarization.

a

b

 = 550 nm𝜆0

 = 642 nm𝜆0
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SI8. Spectral and angular system response calibration.
The hyperspectral angle-resolved emission patterns shown in this work were acquired using a Czerny-
Turner spectrograph equipped with a 500 nm blaze dispersion grating (300 lines/mm) and a back-
illuminated charge-coupled device (CCD) sensor array (Andor Newton DU940P-BU). The system was 
aligned such that the spectral and angular information were projected onto the horizontal and vertical 
sensor axes, respectively. A vertical slit aperture with a horizontal width of 100 μm was introduced to filter 
light emission from a narrow azimuthal range around the optical axis of the parabolic light-collection 
mirror. Samples were exposed to an electron beam current of approximately 3.3 nA for durations of 300 s 
for the metalenses and 250 s for the reference grating.

Fig. S9: Spectral response calibration of the light collection setup. a Real (blue) and imaginary part (orange) of the 
dielectric function of a mono-crystalline Al sample emitting transition radiation (TR). b Integrated TR spectrum 
measured in hyperspectral angle-resolved light detection mode upon 30-keV electron beam excitation. A 
smoothening function (solid orange line) was applied to the experimental data  (orange dotted curve) in order to 𝐼𝑒𝑥𝑝
avoid noise artefacts upon normalization to the calculated TR emission probability  (solid blue line). c Inverted 𝛤𝑇𝑅
spectral response function of the light collection setup applied to normalize the measured intensity distributions. 

The spectral system response function of the light collection setup was determined according to 
a similar procedure as described in Ref. [8]. In brief, transition radiation (TR) excited by a 30-keV electron 
beam was collected from the flat surface of a mono-crystalline aluminum sample and acquired in 
hyperspectral angle-resolved detection mode. The resulting emission pattern was integrated over all 
angles and normalized to the analytical TR expression given in Ref. [9]. For the calculations, optical 
constants representing the employed aluminum sample were derived from spectroscopic ellipsometry 
measurements (see Fig S9a). We stress that an angle-resolved spectral response calibration was omitted 
since the emission of TR is strongly suppressed in the direction of the surface normal [9]. However, 
considering a dominant contribution by the spectrograph (dispersion grating, CCD sensor), angular 
features were assumed to have little effect on the overall spectral system response.

Following Refs. [10-12], the vertical pixel arrays of the CCD sensor were calibrated for the zenithal 
emission angle  by mapping the one-dimensional projection of the light collection mirror onto its 𝜃
parabolic contour in the plane spanned by the electron beam and the optical axis of the imaging system. 
For the -th pixel in an array, the corresponding emission angle  was derived from an expression of the 𝑛 𝜃𝑛
form

𝜃𝑛 =
𝜋
2 + arctan (𝑎𝑧𝑛 ―

1
4𝑎𝑧𝑛),

where  = 0.1 mm-1 is the parabola coefficient and  denotes the vertical coordinate of a mirror surface 𝑎 𝑧𝑛
element above the focal plane. The latter was calculated as , where 𝑧𝑛 = 𝑧0 + 𝑛(𝑧𝑁 ― 𝑧0)/(𝑁 + 1) 𝑧0 =

a b c
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 mm and = 11.5 mm correspond to the lower and upper mirror cutoffs, respectively, and  is  0.5  𝑧𝑁 𝑁 + 1
the total number of enclosed pixels. In addition, the hole for electron transmission provides a useful 
reference for upwards emission at an angle . Eventually, the calibrated data were normalized to the 𝜃 = 0
collection solid angle using an expression of the form

dΩn ∝
2𝑎𝑧2

𝑛 ― 𝑥𝑛

(𝑥2
𝑛 + 𝑧2

𝑛)
3
2

with .𝑥𝑛 =  𝑎𝑧2
𝑛 ― (4𝑎) ―1

We note that the above procedure is optimized for light emission by a point source that is precisely 
aligned with the mirror focal plane. In our Smith Purcell experiments, however, light is emitted by 
elongated sources that extend more than 20 µm below the focus. Reassuringly, a ray-tracing analysis has 
revealed little distortion of the angular system response by the precise vertical sample placement. 
Nevertheless, we found significant chromatic aberrations that are correlated with the curvature of the 
emission wavefronts. For reference, this effect is also reproduced in Fig. S10, showing the emission 
patterns of our model structures as projected onto the CCD sensor plane, prior to the transformation of 
the vertical axis into angles. At the bottom, the patterns are truncated by the lower cutoff of the light-
collection mirror, with opposing slopes distinguishing the two metalenses. 

Fig. S10: Raw ray-tracing projection of the simulated metalens and periodic grating radiation patterns onto a planar 
screen. At the bottom, the metalens radiation patterns are truncated along a line with opposing slope, revealing 
wave-front-related chromatic aberrations in the projection of the lower cutoff of the parabolic light collection mirror.

Due to minor system imperfections, we note that the experimental data feature additional 
chromatic aberrations that manifest as a common slope in the projection of the hole for electron 
transmission. Thus, the measured patterns were calibrated by linear adaptation of the reference angles 

 and  for each spectral data slice , with a small uncertainty of 1 to 2 pixels. However, to maintain 𝜃0 𝜃𝑁 𝜆𝑚
and unambiguously recover wave-front related aberrations, we stress that the exact same calibration 
parameters were used for both the converging and diverging metalenses. In addition, the calibration of 
the reference SP grating was verified against the theoretical SP dispersion relation. The error introduced 
by the calibration uncertainty can be estimated as
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Δ𝜃𝑛 =

𝑎 +
1

4𝑎𝑧2
𝑛

1 + (𝑎𝑧0 ―
1

4𝑎𝑧𝑛)2Δ𝑧 =
2𝑎𝑧𝑛 + cot 𝜃𝑛

1 + cot2 𝜃𝑛

Δ𝑧
𝑧𝑛

,

where  is given by twice the size of the CCD sensor pixels of  µm for two-fold binning. Considering Δ𝑧 13.5
the lower cutoff angle , we obtain .𝜃0 ≈ 11° Δ𝜃0≅tan 𝜃0(Δ𝑧/𝑧0) ≲ 1°

Appendix: Analytical derivation of electron-induced far-field emission probabilities
In the following, we apply an analytical Green’s function formalism to derive the far-field emission 
probabilities of our Smith Purcell structures under the assumptions posed in section SI2. First, we note 
that the emitted far field amplitude  can be obtained from the angular spectrum representation 𝓔∞(𝑟𝐧,𝜔)
of the electric field [3] on a reference plane s , with  denoting the surface normal, observed at a direction 𝐬

: 𝐧

𝓔∞(𝑟𝐧,𝜔) = ―2𝜋𝑖
𝜔
𝑐 𝐧 ⋅ 𝐬

𝑒
𝑖
𝜔
𝑐 𝑟

𝑟 ∫𝑑2𝐬𝑒
𝑖
𝜔
𝑐 𝐧 ⋅ 𝐬

𝓔(𝐬,𝜔)

By taking the reference plane  to be the transverse plane spanned by  and  (with ) we find𝐬 𝛉 𝛟 𝐬 = 𝐧

𝓔∞(𝑟𝐧,𝜔) = ―2𝜋𝑖
𝜔
𝑐

𝑒
𝑖
𝜔
𝑐 𝑟

𝑟 ∫∫𝑑𝑢𝑑𝑣𝓔(𝑢𝛉 + 𝑣𝛟,𝜔),  (A1)

Further, we can relate the far field to the source current  induced by a free 𝐣(𝐫,𝜔) = 𝐳𝑒𝛿(𝐫 ⊥ ― 𝐫 ⊥ ,0)𝑒𝑖
𝜔
𝑣𝑧

electron for propagation along the  direction via [3]𝑧

𝓔∞(𝑟𝐧,𝜔) = 𝑖𝜔𝜇0∫𝑑3𝐫′𝐆∞(𝑟𝐧,𝐫′,𝜔)𝐣(𝐫′,𝜔),                                              (A2)

where  is the far-field dyadic Green's function. Assuming emission into a homogeneous 𝐆∞(𝑟𝐧,𝐫′,𝜔)
medium with dielectric permittivity , it proves useful to introduce normal modes  that satisfy 𝜀𝑟(𝐫,𝜔) 𝐮𝐤(𝐫)

the relations  and  [3]. ∇ × ∇ × 𝐮𝐤(𝐫) ― 𝜀𝑟(𝐫,𝜔)
𝜔2

𝑐2 𝐮𝐤(𝐫) = 0  ∫𝑑3𝐫[ 1
2𝜔

𝑑(𝜔2𝜀𝑟(𝐫,𝜔))
𝑑𝜔 ]

𝜔 = 𝜔𝐤

𝐮𝐤(𝐫)𝐮𝐤′(𝐫) = 𝛿𝐤𝐤′

Thus  can be evaluated in terms of a mode expansion [3]𝐆∞(𝑟𝐧,𝐫′,𝜔)

𝐆∞(𝑟𝐧,𝐫′,𝜔) = ∑
𝐤

𝑐2
𝐮𝐤,∞(𝑟𝐧)𝐮 ∗

𝐤 (𝐫′)
𝜔2

𝐤 ― 𝜔2 ,                                                    (A3)

where  denotes the far-field amplitude of mode  with the summation running over the wave 𝐮𝐤,∞(𝑟𝐧) 𝐮𝐤(𝐫)
vector  of all allowed momentum states. In free space, these states are given by plane waves that 𝐤
approximately follow a continuous dispersion relation , transforming the sum in Eq. (A3) into an 𝜔𝐤 = 𝑐𝑘
integral. Choosing an ansatz for the grating modes  as introduced in section SI2, insertion into Eq. 𝐮𝐤(𝐫)
(A1) yields the normalized far field amplitude  in the explicit form𝐮𝐤,∞(𝑟𝐧)

𝐮𝐤,∞(𝑟𝐧) = ―
2𝜋𝑖

𝑘
𝑒𝑖𝑘𝑟

𝑟 𝐀0(𝑘𝐧)𝛿(𝐤 ― 𝐧).

We can now derive the far-field dyadic Green's function as
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𝐆∞(𝑟𝐧,𝐫′,𝜔)

= ∫ 𝑑3𝑘

(2𝜋)3𝑐2
𝐮𝐤,∞(𝑟𝐧)𝐮 ∗

𝐤 (𝐫′)
𝜔2

𝐤 ― 𝜔2 = ―𝑖
1
𝜔

𝑐2

8𝜋2

∫𝑑𝑘𝑑Ω𝑘
𝑒𝑖𝑘𝑟

𝑟 𝐀0(𝑘𝐧)𝛿(𝐤 ― 𝐧)𝐮 ∗
𝐤 (𝐫′)( 1

𝜔𝐤 ― 𝜔 ― 𝑖𝛿 ―
1

𝜔𝐤 + 𝜔 + 𝑖𝛿)
= ―𝑖

1
𝜔

𝑐

8𝜋2∫𝑑𝑘𝑘
𝑒𝑖𝑘𝑟

𝑟 𝐀0(𝑘𝐧)𝐮 ∗
𝑘𝐧(𝐫′)( 1

𝑘 ―
𝜔
𝑐 ― 𝑖𝛿

―
1

𝑘 +
𝜔
𝑐 + 𝑖𝛿

) =
𝑒

𝑖
𝜔
𝑐 𝑟

4𝜋𝑟𝐀0(𝜔
𝑐 𝐧)𝐮 ∗𝜔

𝑐 𝐧
(𝐫′)

where in the last step we exploited Cauchy's integral identity assuming a vanishing loss term . By 𝛿→0
insertion into Eq. (A2), we obtain the electron-induced far-field in the form

𝓔∞(𝑟𝐧,𝜔) = 𝑖𝑒𝜔𝜇0
𝑒

𝑖
𝜔
𝑐 𝑟

4𝜋𝑟𝐀0(𝜔
𝑐 𝐧)∫𝑑𝑧′𝑒

𝑖
𝜔
𝑣𝑧′

𝐮 ∗𝜔
𝑐 𝐧

(𝐫 ⊥ ,0,𝑧′) ⋅ 𝐳.

The corresponding power distribution per unit frequency and unit solid angle as collected by a detector 
can be written as :

𝑑2𝑃
𝑑Ω𝑑𝜔 =

𝛼ℏ

4𝜋2𝑇

𝜔2

𝑐2 |𝐀0(𝜔
𝑐 𝐧)|2|∫𝑑𝑧′𝑒

𝑖
𝜔
𝑣𝑧′

𝐮 ∗𝜔
𝑐 𝐧

(𝐫 ⊥ ,0,𝑧′) ⋅ 𝐳|
2

where  is the fine structure constant and  is the interaction time. Finally, we obtain 𝛼 = 𝑒2/4𝜋𝜖0ℏ𝑐  𝑇 = 𝐿/𝑣
the desired emission probabilities with respect to the emission wavelength from

𝑑2𝑝
𝑑Ω𝑑𝜆 =

𝑑𝜔
𝑑𝜆

𝑇
ℏ𝜔

𝑑2𝑃
𝑑Ω𝑑𝜔 = 𝛼|𝐀0(𝑘𝐧)|2 1

𝜆3|∫𝑑𝑧𝑒
―𝑖

𝜔
𝑣𝑧

𝐮𝑘𝐧(𝐫 ⊥ ,0,𝑧) ⋅ 𝐳|
2

where  and .𝑘 = 2𝜋/𝜆 𝜔 = 2𝜋𝑐/𝜆
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