Key papers from EM groups worldwide on ultrafast and quantum electron-light-matter interactions (selection)
Topics
- PINEM: shaping and characterizing electron wavepackets
- PINEM: electron-cavity interactions
- PINEM, EELS, and CL correlations
- Quantum interactions
- Electrons as broadband ultrafast light sources
- Ultrafast spectroscopy
- CL spectroscopy and correlations
- Metrology and spectroscopy
- On-chip interactions
- New start-of-the-art technology and methodology
- Previous literature, key original papers
- Other relevant reviews
PINEM: shaping and characterizing electron wavepackets
- A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schaefer, C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521, 200-203 (2015)
Strong electron-light interaction creates quantum-coherent electron wavepackets - Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).
A pump-probe sequence reveals in a movie the sample’s oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. - K. E. Priebe, C. Rathje, S. V. Yalunin, T. Hohage, A. Feist, S. Schaefer, C. Ropers, Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy, Nat. Photon. 11, 793-797 (2017)
Quantum state reconstruction of attosecond electron pulse trains generated by strong electron-light interation - GM Vanacore, I Madan, G Berruto, K Wang, E Pomarico, RJ Lamb, …, Attosecond coherent control of free-electron wave functions using semi-infinite light fields, Nat. Commun. 9, 2694 (2018) Time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence.
- GM Vanacore, G Berruto, I Madan, E Pomarico, P Biagioni, RJ Lamb, …, Generation and control of an ultrafast electron vortex beam via chiral plasmonic near-fields, Nat. Mater. 18, 573-579 (2018)
Chiral plasmonic near fields imprint vortex structure on phase shaped electron wavepackets - Y. Morimoto, P. Baum, Single-cycle optical control of beam electrons, Phys. Rev. Lett. 125, 193202 (2020)
Single-cycle optical control of a freely propagating electron beam with an isolated cycle of midinfrared light - V Di Giulio, FJ García de Abajo, Free-electron shaping using quantum light, Optica 7, 1820-1830 (2020), Phase squeezed light creates enhanced control over electron wavepacket shaping.
- M. Tsarev, A. Ryabov, P. Baum, Measurement of temporal coherence of free electrons by time-domain electron Interferometry, Phys. Rev. Lett. 127, 165501 (2021)
Time-domain interferometer measures and distinguishes the pure and ensemble coherences of a free-electron beam via symmetry-breaking shifts of photon-order sideband peaks - FJ García de Abajo, A Konečná , Optical modulation of electron beams in free space, Phys. Rev. Lett. 126, 123901 (2021)
Semiclassical theory involving a quantum description of the electrons shows that monochromatic optical fields focused in vacuum can be used to correct electron beam aberrations and produce selected focal shapes. Stimulated elastic Compton scattering is exploited to imprint the required electron phase - I Madan, V Leccese, A Mazur, F Barantani, T LaGrange, A Sapozhnik, …, Ultrafast transverse modulation of free electrons by interaction with shaped optical fields, ACS Photon. 9, 3215-3224 (2022)
Laterally shaped light fields create electron wavepackets that are shaped in space and time. - FJ García de Abajo, C Ropers, Spatiotemporal electron beam focusing through parallel interactions with shaped optical fields, Phys. Rev. Lett. 130, 246901 (2023)
Lateral control over electron wavepackets allows for simultaneous spatial and temporal compression of a convergent electron wave function, enabling the formation of sub-Ångström focal spots of attosecond duration. - Y. Fang, J. Kuttruff, D. Nabben, P. Baum, Structured electrons with chiral mass and charge, Science 385, 183-187 (2024)
Structured light creates electron beams with structure mass distributions - J. Kuttruff, D. Nabben, A.C. Zimmermann, A. Ryabov, P. Baum, Terahertz control and timing correlations in a transmission electron microscope, Science Adv. 10 (2024)
Single-cycle teraherz light pulses compress electron beams to the attoscond time domain
PINEM: electron-cavity interactions
- O. Kfir, H. Lourenço-Martins, G. Storeck, M. Sivis, T. R. Harvey, T. J. Kippenberg, A. Feist, C. Ropers, Controlling free electrons with optical whispering-gallery modes, Nature 582, 46-49 (2020)
Field enhancements in silica microspheres enhance stimulated electron-photon interactions - K. Wang, R. Dahan, M. Shentcis, Y. Kauffmann, A. Ben- Hayun, O. Reinhardt, S. Tsesses, and I. Kaminer, Coherent interaction between free electrons and cavity photons, Nature 582, 50-54 (2020)
Free-electron probe resolves the spatiotemporal and energy–momentum information of 2D photonic crystals. - R. Dahan, S. Nehemia, M. Shentcis, O. Teinhardt, Y. Adiv, X. Shi, P. Be’er. M. H. Lynch, Y. Kurman, K. Wang, I. Kaminer, Resonant phase-matching between a light wave and a free-electron wavefunction, Nature Phys. 16, 1123–1131 (2020)
Spatially extended electron-light matter interaction creates ultrabroad electron energy comb spectrum. - J.-W. Henke, A. S. Raja, A. Feist, G. Huang, G. Arend, Y. Yang, F. J. Kappert, R. N. Wang, M. Möller, J. Pan, J. Liu, O. Kfir, C. Ropers, T. J. Kippenberg, Integrated photonics enables continuous-beam electron phase modulation, Nature 600, 653-658 (2021)
Coupling electron beams to optical integrated circuits; strong optical near fields in high-Q microcavities generate quantum correlated electron wavepackets. - I. Madan et al., Ultrafast transverse modulation of free electrons by interaction with shaped optical fields, ACS Photon. 9, 3215-3224 (2022)
Shaping optical near field with light modulator controls electron wavepackets - S. Tsesses, R. Dahan, K. Wang, T. Bucher, K. Cohen, O. Reinhardt, G. Bartal, I. Kaminer, Tunable photon-induced spatial modulation of free electrons, Nat. Mater. 22, 345–352 (2023).
Controlled 2D patterns of surface plasmon polaritons provide enhanced and tunable control over electron wavepackets. - T. Bucher, R. Ruimy, S. Tsesses, R. Dahan, G. Bartal, G. M. Vanacore, I. Kaminer, Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields, Sci. Adv. 9, eadi5729 (2023)
- Enhanced near field probing intensity using free electron Ramsey-type interferometry T. Bucher, R. Ruimy, S. Tsesses, R. Dahan, G. Bartal, G. M. Vanacore, I. Kaminer, Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields, Sci. Adv. 9, eadi5729 (2023)
Enhanced near field probing intensity using free electron Ramsey-type interferometry - Y. Yang, J.-W. Henke, A. S. Raja, F. J. Kappert, G. Huang, G. Arend, Z. Qiu, A. Feist, R. N. Wang, A. Tusnin, A. Tikan, C. Ropers, T. J. Kippenberg, Free-electron interaction with nonlinear optical states in microresonators, Science 383, 168-173 (2024)
Strong electron-light mater interaction probes propagation of non-linear states of light in microcavities
PINEM, EELS, and CL correlations
- S. Meuret, T. Coenen, M. Lätzel, S. Christiansen, S. Conesa Boj, and A. Polman, Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells, Phys. Rev. B 96, 035308 (2017)
Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells - V Di Giulio, M Kociak, FJG de Abajo, Probing quantum optical excitations with fast electrons, Optica 6, 1524-1534 (2019)
Quantum optics description shows electron spectra strongly depend on the statistics of the sample excitations (bosonic or fermionic) and their population (Fock, coherent, or thermal), of which the autocorrelation functions are directly retrieved from the ratios of electron gain intensities. - M. Solà-Garcia, K.W. Mauser, T. Coenen, M. Lätzel, S. Christiansen, S. Meuret, and A. Polman, Photon statistics of incoherent cathodoluminescence with continuous and pulsed electron beams, ACS Photon. 8, 916-925 (2021)
Continuous and pulsed electron beams generate distinct photon bunching spectra in III-V semiconductors - A. Feist, G. Huang, G. Arend, Y. Yang, J.-W. Henke, A.S. Raja, F.J. Kappert, R.N. Wang, H. Lourenço-Martins, Z. Qiu, J. Liu, O. Kfir, T.J. Kippenberg, C. Ropers, Cavity-mediated electron-photon pairs, Science 377, 777-780 (2022)
Event-based detection reveals the generation of Coulomb-correlated pair, triple and quadruple states of free electrons by femtosecond photoemission. - N. Varkentina et al., Cathodoluminescence excitation spectroscopy: Nanoscale imaging of excitation pathways, Sci. Adv. 8, 40 (2022)
Cathodoluminescence excitation (CLE) spectroscopy, correlating CL and EELS allows for the identification of excitation and decay channels in plasmons and 2D materials - R. Haindl, A. Feist, T. Domröse, M. Möller, J. H. Gaida, S. V. Yalunin, C. Ropers, Coulomb-correlated electron number states in a transmission electron microscope beam, Nat. Phys. 19, 1410-1417 (2023)
Generation of Coulomb-correlated pair, triple and quadruple states of free electrons by femtosecond photoemission measured using event0-based correlative detection. - M. Even Tzur, M. Birk, A. Gorlach, M. Krüger, I. Kaminer, and O. Cohen, Photon-statistics force in ultrafast electron dynamics, Nat. Photon. 17, 501–509 (2023)
Quantum statistics of light affects electron-light matter interaction (theory) - R. Ruimy, A. Gorlach, G. Baranes, I. Kaminer, Superradiant electron energy loss spectroscopy, Nano Lett. 23, 779-787 (2023) Mutual coherence of electron beam excited emitters creates superradiance effects imprinted on electron energy loss spectra
- Y Auad, EJC Dias, M Tencé, JD Blazit, X Li, LF Zagonel, O Stéphan, …, μeV electron spectromicroscopy using free-space light, Nat. Comm. 14, 4442 (2023) 10^8-fold increase in light-electron coupling efficiency in whispering gallery cavities.
Quantum interactions
- A Konečná, F Iyikanat, FJ García de Abajo, Entangling free electrons and optical excitations, Science Adv. 8, eabo7853 (2022)
Electron-light momentum scattering creates entanglement with a continuum of optical modes revealed by EELS and CL spectra - G. Huang, N. J. Engelsen, O. Kfir, C. Ropers, T. J. Kippenberg, Electron-photon quantum state heralding using photonic integrated circuits, PRX Quantum 4, 020351 (2023)
Heralded single-photon generation scheme provides new concepts for on-chip platform for free-electron quantum optics. - M. Tsarev, J.W. Thurner, P. Baum, Nonlinear-optical quantum control of free-electron matter waves, Nat. Phys. 19, 1350 (2023)
Free-space electron and crossed laser beams interact to create strongly modulated electron pulses with attosecond time structure, representing qbits - TP Rasmussen, ÁR Echarri, JD Cox, FJG de Abajo,,Generation of entangled waveguided photon pairs by free electrons, Science Adv. 10, eadn6312 (2024) Electron beam generation of counterpropagating plasmon polaritons heralded by the electron energy loss
- C. I. Velasco, V. Di Giulio, F. J. García de Abajo, Radiative loss of coherence in free electrons: a long-range quantum phenomenon, Light Sci. Appl. 13, 31 (2024)
Quantum mechanics can manifest at macroscopic distances in free-electron interference produced by electron–radiation coupling in the presence of distant extended objects. - CI Velasco, V Di Giulio, FJ García de Abajo, Radiative loss of coherence in free electrons: a long-range quantum phenomenon, Light: Sci. Appl. 13, 31 (2024)
Long-range quantum mechanical interactions result in a nearly complete depletion of coherence associated with which-way free-electron interference probed by far-field radiation. Probing temperature at a distance.
Electrons as broadband ultrafast light sources
- N Yamamoto, F Javier García de Abajo, V Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy, Phys. Rev. B 91 (12), 125144 (2015)
Angle-resolved cathodoluminescence spectroscopy reveals that interplay between geometrical lattice resonances and surface plasmons strongly mediates dispersion of Smith-Purcell radiatio
- N. van Nielen, N. Schilder, M. Hentschel, H. Giessen, A. Polman, and N. Talebi, Electrons generate self-complementary broadband vortex light beams using chiral photon sieves, Nano Lett. 20, 5975 (2020) Electron-excited surface plasmon polaritons scatter from tailored metasurface to create optical vortex light beam with defined angular momentum order.
- V Di Giulio, FJ García de Abajo, Optical-cavity mode squeezing by free electrons, Nanophoton. 11, 4659-4670 (2022), Ponderomotive contribution to low-energy electron–cavity interaction in strongly confined near-fields creates coherent and squeezed states of light
- M. Taleb, M. Hentschel, K. Rossnagel, H. Giessen, and N. Talebi, Phase-locked photon–electron interaction without a laser, Nat. Phys. 19, 869–876 (2023). Sequential interaction of electron beam and electron-created light emission create s interferences in the far field.
- F. Chahshouri, N. Talebi, Numerical investigation of sequential phase-locked optical gating of free electrons, Scient. Rep. 13, 18949 (2023)
Sequential interactions between slow electrons and localized dipolar plasmons in a sequential phase-locked interaction scheme creates control over electron wavepackets - N. van Nielen, N. Schilder, M. Hentschel, H. Giessen, A. Polman, and N. Talebi, S. Ebel, N. Talebi, Inelastic electron scattering at a single-beam structured light wave, Comm. Phys. 6, 179 (2023).
Inelastic scattering of slow-electron wavepackets at a propagating Hermite-Gaussian light beam forms a ponderomotive potential for the electron and controls formation of discrete energy sidebands. - T. Bucher et al., Coherently amplified ultrafast imaging using a free-electron interferometer, Nature Photon. 18, 809–815 (2024)
Strong electron-light interaction probes time-, space- and phase-resolved dynamics of a hexagonal boron nitride membrane micro-drum. - M. Liebtrau and A. Polman, Angular dispersion of free-electron-light coupling in an optical fibre-integrated metagrating, ACS Photon. 11, 1125-1136 (2024)
Fibre-coupled electron-light coupling geometry probes dispersion of Smith-Purcell radiation
Ultrafast spectroscopy
- C. Kälhofer, W. Scheider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum, All-optical control and metrology of electron pulses, Science352, 429-433 (2016)
Optical-field control of electron pulses provides synchronism to laser pulses and offers ultrahigh temporal resolution - M. Th. Hassan et al., High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics, Nature Photon. 11, 425–430 (2017)
Imaging ultrafast electron dynamics - A. Ryabov, W. Turner, D. Nabben, V. Tsarev, P. Baum, Attosecond metrology in a continuous-beam transmission electron microscope, Science Adv. 6, (2020)
Contrinuous laser beam modulates electron beam to create attosecond time structure for transmission electron beam materials spectroscopy - D. Nabben, J. Kuttruff, L Stolz, A. Ryabov, P. Baum, Attosecond electron microscopy of sub-cycle optical dynamics, Nature 619, 63-67 (2023)
Attosecond electron pulse trains reveal ultrafast optical dynamics - M Yannai et al., Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors, ACS Nano, 17, 3645-3656 (2023)
High-energy electrons probe nanoscale charge dynamics through THz near field generated by low energy electrons in semiconductors - J. H. Gaida, H. Lourenço-Martins, M. Sivis, T. Rittmann, A. Feist, F. J. García de Abajo, C. Ropers, Attosecond electron microscopy by free-electron homodyne detection, Nat. Phys. 18, 509-515 (2024)
Tuning the interference of quantum-modulated electron beams creates time-resolved near field distributions of plasmonic nanostructures
CL, EELS and correlations
- N. Schilder, H. Agrawal, E.C. Garnett, and A. Polman, Phase-resolved surface plasmon scattering probed by cathodoluminescence holography, ACS Photon. 7, 1476-1482 (2020)
Cathodoluminescence holography reveals far-field phase distribution of plasmonic scattering fields - M. Liebtrau, M. Sivis, A. Feist, H. Lourenço-Martins, N. Pazos-Pérez, R. A. Alvarez-Puebla, F. J. García de Abajo, A. Polman and C. Ropers, Spontaneous and stimulated electron-photon Interactions in nanoscale plasmonic near fields, Light Sci. Appl. 10 (2021)
Cathodoluminescence, electron energy loss and gain probe momentum matching conditions in extreme plasmonic near-fields - V. Di Giulio, O. Kfir, C. Ropers, F.J. García de Abajo, Modulation of cathodoluminescence emission by interference with external light, ACS Nano 15, 7290-7304 (2021)
Far-field interference reveals coherent interaction between optically modulated electron wavepacket and light emission - C.W. Johnson, Inelastic Mach-Zehnder interferometry with free electrons, Phys. Rev. Lett. 128, 147401 – (2022)
Interferometry with elastically and inelastically scattered electrons in plasmonic particles - A. Karnieli, D. Roitman, M. Liebtrau, S. Tsesses, N. van Nielen, I. Kaminer, A. Arie, A. Polman, Cylindrical metalens for generation and focusing of free-electron radiation, Nano Lett. 22, 5641-5650 (2022)
Free electrons generate broadband light that can be focused using metalenses - S. Yanagiomto, et al., Time-correlated electron and photon counting microscopy, Comm. Phys. 6, 260 (2023)
Correlating CL photon and elecrton counting statistics - E. Akerboom, V. Di Giulio, N.J. Schilder, F. J. García de Abajo, A. Polman, Free electron-plasmon coupling strength and near-field retrieval through electron-energy-dependent cathodoluminescence spectroscopy ACS Nano 18, 13560-13567 (2024)
Energy-dependent cathodoluminescence on Au nanocolloids reveals optimum electron-plasmon coupling - V. Di Giulio, E. Akerboom, A. Polman, F. J. García de Abajo, Toward optimum coupling between free electrons and confined optical modes, ACS Nano 18, 14255-14275 (2024)
Towards unity electron-induced photon generation in nanoscale geometries
Metrology and spectroscopy
- S. Meuret, T. Coenen, S. Woo, Y.-H. Ra, Z. Mi and A. Polman, Nanoscale relative emission efficiency mapping using CL g(2) imaging, Nano Lett. 18, 2288-2293 (2018)
Photon bunching correlations reveal quantum efficiency distribution of III-V semiconductor nanostructures - I Madan, GM Vanacore, E Pomarico, G Berruto, RJ Lamb, D McGrouther, …, Holographic imaging of electromagnetic fields via electron-light quantum interference, Science Adv. 5, eaav8358 (2019) Interference of surface plasmon polaritons created by a split electron wavepacket probes phase of plasmon fields.
- T Sannomiya, A Konecna, T Matsukata, Z Thollar, T Okamoto, …, Cathodoluminescence phase extraction of the coupling between nanoparticles and surface plasmon polaritons, Nano Lett. 20, 592-598 (2019) Interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information.
- H. Lourenço-Martins, H. Gérard, D, M. Kociak, Optical polarization analogue in free electron beams, Nat. Phys. 17, 598-603 (2021).
Electron energy loss spectroscopy allows the direct measurement of the polarized electromagnetic local density of states. - O Kfir, V Di Giulio, FJG de Abajo, C Ropers, Optical coherence transfer mediated by free electrons, Science Adv. 7, eabf6380(2021) Phase correlations are predicfed between the emitted CL field and the electron-modulating laser. In addition, the coherence of the CL field extends to harmonics of the laser frequency.
- V Di Giulio, O Kfir, C Ropers, FJ Garcia de Abajo, Modulation of cathodoluminescence emission by interference with external light, ACS Nano 15, 7290-7304, (2021) Quantum-optical correlations create phase correlations between emitted CL field and and electron-modulating laser field. Tte coherence of the CL field extends to harmonics of the laser frequency.
- CW Johnson, AE Turner, FJ García de Abajo, BJ McMorran, Inelastic Mach-Zehnder interferometry with free electrons, Phys. Rev.Lett. 128 , 147401 (2022) Inelastic plasmon scattering using a split electron beam reveals,phase sensitive information through interferometry
- A. Karnieli, S. Tsesses, R. Yu, N. Rivera, Z. Zhao, A. Arie, S. Fan, and I. Kaminer, Quantum sensing of strongly coupled light-matter systems using free electrons, Sci. Adv. 9, eadd2349 (2023)
Quantum interference of free-electron wave packets gives rise to a quantum-enhanced sensing protocol for the position and dipole orientation of a subnanometer emitter inside a cavity. - M Yannai, R Dahan, A Gorlach, Y Adiv, K Wang, I Madan, S Gargiulo, …, Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors, ACS Nano 17, 3645-3656 (2023) Pulsed laser excited charge dynamics in semiconductors create local THz fields that are probed with pulsed electrons
- M. Mattes, M. Volkov, P. Baum, Femtosecond electron beam probe of ultrafast electronics, Nat. Comm. 15, 1743 (2024) Femtosecond electron beams probe GHz properties of electronic integrated circuits with micrometer and millivolt resolution
New start-of-the-art technology and methodology
- Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016)
New concept of low-dose quantum measurement in TEM - Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017)
Femtosecond photoemission TEM - Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018)
Tunable phase plate for TEM - S. Meuret, M. Solà Garcia, T. Coenen, E. Kieft, H. Zeijlemaker, M. Lätzel, S. Christiansen, S. Y. Woo, Y. H. Ra, Z. Mi, A. Polman, Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope, Ultramicroscopy 197, 28-38 (2019)
Picosecond pump-probe cathodoluminescence microscope - A Konečná, FJG de Abajo, Electron beam aberration correction using optical near fields, Phys. Rev. Lett. 125, 030801 (2020)
Optically-driven phase plates enables dynamic shaping of electron-beam wave functions in space and time.
- X. Li, G. Haberfehlner, U. Hohenester, O. Stéphan, G. Kothleitner, M. Kociak, Three-dimensional vectorial imaging of surface phonon polaritons, Science, 371, 1364-1367 (2021)
Electron-energy loss imaging spectroscopy reveals three-dimensional distribution of phonon-polariton excitations - S. Meuret, L. H. G. Tizei, F. Houdellier, S. Weber, Y. Auad, M. Tencé, H.-C. Chang, M. Kociak, A. Arbouet, Time-resolved cathodoluminescence in an ultrafast transmission electron microscope. Appl. Phys. Lett. 119, 062106 (2021).
First CL lifetime imaging in an ultrafast TEM - Y. Auad, et al., Event-based hyperspectral EELS: towards nanosecond temporal resolution, Ultramicroscopy 239, 113539 (2022)
Event-based hyperspectral EELS - Y. Auad et al., μeV electron spectromicroscopy using free-space light, Nat. Comm. 4, 4442 (2023)
Ultrahigh-resolution electron energy gain spectroscopy using optical excitation - M. Seidling, F. D. F. Schmidt-Kaler, R. Zimmermann, J. W. Simonaitis, P. D. Keathley, K. K. Berggren, P. Hommelhoff, Resonating electrostatically guided electrons, Phys. Rev. Lett. 132, 255001 (2024)
Pulsed on-chip optical field distributions accelate and trap low-energy electrons - AP Synanidis, PAD Gonçalves, C Ropers, FJG de Abajo, Quantum effects in the interaction of low-energy electrons with light, Science Adv. 10, eadp4096 (2024)
Calculations on strong electron-light interactions at low energies.
Previous literature, key original papers
- Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Mat. Proc. Camb. Phil. Soc 29, 297–300 (1933).
Kapitza-Dirac effect: electrons scatter off optical standing waves - Smith, S. J. & Purcell, E. M. Visible light from localized surface charges moving across a grating. Phys. Rev 92, 1069 (1953)
Smith-Purcell radiation: electrons coupling to a grating create optical radiation - Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001)
Êxperimental demonstration of the Kaptiza-Dirac effect - Yamamoto, N., Araya, K. & García de Abajo, F. J. Photon emission from silver particles induced by a high-energy electron beam. Phys. Rev. B 64, 205419 (2001).
First CL from plasmonic nanoparticles - Merano, M. et al. Probing carrier dynamics in nanostructures by picosecond cathodoluminescence. Nature 438, 479–482 (2005)
First CL lifetime measurements in SEM-CL - Vesseur, E. J. R., de Waele, R., Kuttge, M. & Polman, A. Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy. Nano Lett. 7, 2843–2846 (2007).
First 2D CL maps of plasmonic resonances - Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007).
First 2D EELS maps of plasmonic resonances - García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).
First link between LDOS and EELS - F. J. García de Abajo, M. Kociak, Electron energy-gain spectroscopy. N. J. Phys. 10, 073035 (2008).
First theoretical model showing quantum correlations in PINEM - B. Barwick, D. J. Flannigan, A. H. Zewail, Photon-induced near-field electron microscopy, Nature 462, 902–906 (2009)
First PINEM experiment: strong optical near field imprints side bands on electron energy spectrum - Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nat. Mater. 11, 781–787 (2012)
First 2D CL maps of photonic crystal modes - Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).
First 3D EELS maps of plasmonic resonances - Vesseur, E. J. R., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n=0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013).
First angle-resolved CL mapping of dispersion relations - Vibrational spectroscopy in the electron microscope, Nature 514, 209–212 (2014).Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
First photon bunching in CL - A. Feist, K. E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schaefer, C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521, 200-203 (2015)
Strong electron-light interaction creates quantum-coherent electron wavepackets: first demonstration of quantum coherence in PINEM
Other relevant reviews
- García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Seminal review paper - Coenen, T. & Haegel, N. M. Cathodoluminescence for the 21st century: learning more from light. Appl. Phys. Rev 4, 031103 (2017)
Review of the state of the art of CL - Kociak, M. & Zagonel, L. F. Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy 176, 112–131 (2017)
Review of the state of the art of CL - A. Polman, M. Kociak, and F. J. Garcia de Abajo, Electron-beam spectroscopy for nanophotonics, Nature Mater. 18, 1158-1171 (2019)
Review of the state-of-the-art of electron-beam spectroscopy for nanophotonics